Development of DBD plasma actuators: The double encapsulated electrode

被引:66
|
作者
Erfani, Rasool [1 ]
Zare-Behtash, Hossein [2 ]
Hale, Craig [2 ]
Kontis, Konstantinos [2 ]
机构
[1] Manchester Metropolitan Univ, Sch Engn, Manchester M1 5GD, Lancs, England
[2] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Plasma actuator; Dielectric barrier discharge; DIELECTRIC BARRIER DISCHARGE; AIR-FLOW CONTROL; SEPARATION CONTROL; OPTIMIZATION; MECHANISMS; RESPONSES; PRESSURE;
D O I
10.1016/j.actaastro.2014.12.016
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric. (C) 2015 IAA. Published by Elsevier Ltd. on behalf of IAA. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
  • [21] Turbulent boundary layer control with a spanwise array of DBD plasma actuators
    李跃强
    高超
    武斌
    王玉帅
    郑海波
    薛明
    王玉玲
    Plasma Science and Technology, 2021, (02) : 32 - 39
  • [22] Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application
    Sahu, Bibhuti Bhusan
    Jin, Su Bong
    Han, Jeon Geon
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2017, 32 (04) : 782 - 795
  • [23] Recent Developments on Dielectric Barrier Discharge (DBD) Plasma Actuators for Icing Mitigation
    Rodrigues, Frederico
    Abdollahzadehsangroudi, Mohammadmahdi
    Nunes-Pereira, Joao
    Pascoa, Jose
    ACTUATORS, 2023, 12 (01)
  • [24] Experimental Comparison of DBD Plasma Actuators for Low Reynolds Number Separation Control
    Marks, Christopher R.
    Sondergaard, Rolf
    Wolff, Mitch
    Anthony, Rich
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2013, 135 (01):
  • [25] Experimental damping of boundary-layer oscillations using DBD plasma actuators
    Grundmann, Sven
    Tropea, Cameron
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (03) : 394 - 402
  • [26] Optimization of operation parameters of DBD plasma actuators for influencing TS-waves
    Quadros, R.
    Grundmann, S.
    Tropea, C.
    TURBULENCE, HEAT AND MASS TRANSFER 6, 2009, : 923 - 926
  • [27] Active electrode isolation for advanced plasma actuators
    Serpieri, J.
    Hehner, M. T.
    Kriegseis, J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 343
  • [28] Active electrode isolation for advanced plasma actuators
    Serpieri, J.
    Hehner, M. T.
    Kriegseis, J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 343
  • [29] A plasma-fluid model for EHD flow in DBD actuators and experimental validation
    Mushyam, A.
    Rodrigues, F.
    Pascoa, J. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2019, 90 (03) : 115 - 139
  • [30] Comparison of DBD plasma actuators flow control authority in different modes of actuation
    Abdollahzadeh, M.
    Pascoa, J. C.
    Oliveira, P. J.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 78 : 183 - 196