Laser-induced graphene fibers

被引:362
|
作者
Duy, Luong Xuan [1 ,2 ]
Peng, Zhiwei [2 ]
Li, Yilun [2 ]
Zhang, Jibo [2 ]
Ji, Yongsung [2 ]
Tour, James M. [2 ,3 ,4 ,5 ]
机构
[1] Rice Univ, Appl Phys Program, 6100 Main St, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, 6100 Main St MS 222, Houston, TX 77005 USA
[3] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA
[4] Rice Univ, Smalley Curl Inst, 6100 Main St, Houston, TX 77005 USA
[5] Rice Univ, NanoCarbon Ctr, 6100 Main St, Houston, TX 77005 USA
关键词
Laser induced graphene; Laser induced graphene fibers; Laser photothermolysis; Polymer carbonization; Microsupercapacitor; CARBON NANOTUBES; POLYIMIDE; SUPERCAPACITORS; CARBONIZATION; MECHANISM; GROWTH;
D O I
10.1016/j.carbon.2017.10.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In our previous research, we found that the laser induction process on commercially available polyimide sheets is a cost-effective method for the formation of porous graphene that can be subsequently fabricated into mechanically flexible devices. Here we study the parameters required for the formation of varied laser-induced graphene (LIG) morphologies by tuning the laser radiation energy. It was found that a critical fluence point of similar to 5 J/cm(2) is needed to initiate the carbonization process regardless of the laser power. When increasing the radiation energy, the physical formation of LIG follows a fluid dynamics process in that the morphology of the LIG progressively changes from sheets to fibers and finally to droplets. We then demonstrate that a morphology of LIG nanomaterial, LIG fibers (LIGF), can be generated by this one-step laser photothermolysis process at a radiation energy >40 J/cm(2). The LIGF are hollow with a LIG wall and form vertically aligned fibers up to 1 mm in height. Microsupercapacitor (MSC) devices fabricated from LIGF and LIGF-LIG hybrids show 2x the specific areal capacitance over MSCs made entirely from LIG, thereby underscoring the potential for LIGF in flexible device applications. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:472 / 479
页数:8
相关论文
共 50 条
  • [21] Doping of Laser-Induced Graphene and Its Applications
    Zhang, Qiwen
    Zhang, Fangyi
    Liu, Xing
    Yue, Zengji
    Chen, Xi
    Wan, Zhengfen
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (16)
  • [22] Laser-Induced Forward Transfer of Graphene Nanoribbons
    M. S. Komlenok
    P. V. Fedotov
    N. D. Kurochitsky
    A. F. Popovich
    P. A. Pivovarov
    Doklady Physics, 2022, 67 : 228 - 235
  • [23] Electronics Laser-induced multilayer graphene sheets
    King, Anthony
    CHEMISTRY & INDUSTRY, 2015, 79 (02) : 15 - 15
  • [24] Densified Laser-Induced Graphene for Flexible Microsupercapacitors
    Lee, Jung Bae
    Jang, Jina
    Zhou, Haoyu
    Lee, Yoonjae
    In, Jung Bin
    ENERGIES, 2020, 13 (24)
  • [25] Laser-induced graphene for bioelectronics and soft actuators
    Xu, Yadong
    Fei, Qihui
    Page, Margaret
    Zhao, Ganggang
    Ling, Yun
    Chen, Dick
    Yan, Zheng
    NANO RESEARCH, 2021, 14 (09) : 3033 - 3050
  • [26] Optical anisotropy of laser-induced graphene films
    Mikheev, K. G.
    Zonov, R. G.
    Mogileva, T. N.
    Fateev, A. E.
    Mikheev, G. M.
    OPTICS AND LASER TECHNOLOGY, 2021, 141
  • [27] Bioderived Laser-Induced Graphene for Sensors and Supercapacitors
    Bressi, Anna Chiara
    Dallinger, Alexander
    Steksova, Yulia
    Greco, Francesco
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 35788 - 35814
  • [28] Laser-Induced Graphene on Additive Manufacturing Parts
    Jiao, Lishi
    Chua, Zhong Yang
    Moon, Seung Ki
    Song, Jie
    Bi, Guijun
    Zheng, Hongyu
    Lee, Byunghoon
    Koo, Jamyeong
    NANOMATERIALS, 2019, 9 (01)
  • [29] Laser-Induced Graphene Capacitive Killing of Bacteria
    Powell, Camilah D.
    Pisharody, Lakshmi
    Jopp, Jurgen
    Sharon-Gojman, Revital
    Tesfahunegn, Brhane A.
    Arnusch, Christopher J.
    ACS APPLIED BIO MATERIALS, 2023, 6 (02) : 883 - 890
  • [30] Design of Experiments and Optimization of Laser-Induced Graphene
    Murray, Richard
    Burke, Micheal
    Iacopino, Daniela
    Quinn, Aidan J.
    ACS OMEGA, 2021, 6 (26): : 16736 - 16743