Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks

被引:53
|
作者
Magnifico, Giuseppe [1 ,2 ]
Felser, Timo [1 ,2 ,3 ]
Silvi, Pietro [4 ,5 ]
Montangero, Simone [1 ,2 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron G Galilei, Padua, Italy
[2] Ist Nazl Fis Nucl INFN, Sez Padova, Padua, Italy
[3] Univ Saarland, Theoret Phys, Saarbrucken, Germany
[4] Univ Innsbruck, Inst Expt Phys, Ctr Quantum Phys, Innsbruck, Austria
[5] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
基金
欧盟地平线“2020”;
关键词
MATRIX PRODUCT STATES; REAL-TIME DYNAMICS; ENTANGLED PAIR STATES; GAUGE-THEORIES; HAMILTONIAN-FORMULATION; RENORMALIZATION-GROUP; QUARK CONFINEMENT; PHASE-TRANSITIONS; SIMULATIONS; MODELS;
D O I
10.1038/s41467-021-23646-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gauge theories are of paramount importance in our understanding of fundamental constituents of matter and their interactions. However, the complete characterization of their phase diagrams and the full understanding of non-perturbative effects are still debated, especially at finite charge density, mostly due to the sign-problem affecting Monte Carlo numerical simulations. Here, we report the Tensor Network simulation of a three dimensional lattice gauge theory in the Hamiltonian formulation including dynamical matter: Using this sign-problem-free method, we simulate the ground states of a compact Quantum Electrodynamics at zero and finite charge densities, and address fundamental questions such as the characterization of collective phases of the model, the presence of a confining phase at large gauge coupling, and the study of charge-screening effects.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Tensor renormalization group study of (3+1)-dimensional ℤ2 gauge-Higgs model at finite density
    Shinichiro Akiyama
    Yoshinobu Kuramashi
    Journal of High Energy Physics, 2022
  • [22] Thermofield quantum electrodynamics in (1+1) dimensions at a finite chemical potential: a bosonization approach
    Amaral, R. L. P. G.
    Belvedere, L. V.
    Rothe, K. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (14)
  • [23] SKYRMIONS IN (3+1) DIMENSIONS
    STRATOPOULOS, GN
    ZAKRZEWSKI, WJ
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1993, 60 (04): : 689 - 694
  • [24] A solvable quantum field theory with asymptotic freedom in (3+1) dimensions
    Romatschke, Paul
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023, 38 (28):
  • [25] Quantum QED flux tubes in 2+1 and 3+1 dimensions
    Graham, N
    Khemani, V
    Quandt, M
    Schröder, B
    Weigel, H
    NUCLEAR PHYSICS B, 2005, 707 (1-2) : 233 - 277
  • [26] Quantum magnetic vortices at finite temperature in (3+1)-D
    Marino, EC
    Sasaki, DGG
    MODERN PHYSICS LETTERS A, 2000, 15 (11-12) : 731 - 735
  • [27] Quantum Criticality between Topological and Band Insulators in 3+1 Dimensions
    Goswami, Pallab
    Chakravarty, Sudip
    PHYSICAL REVIEW LETTERS, 2011, 107 (19)
  • [28] Critical endpoint of (3+1)-dimensional finite density Z3 gauge-Higgs model with tensor renormalization group
    Akiyama, Shinichiro
    Kuramashi, Yoshinobu
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (10)
  • [29] CONFINED QUANTUM ELECTRODYNAMICS IN 1 + 1 DIMENSIONS - A PERTURBATIVE ANALYSIS
    AERTS, ATM
    HANSSON, TH
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1985, 28 (04): : 537 - 544
  • [30] Numerical relativity in 3+1 dimensions
    Brügmann, B.
    Annalen der Physik (Leipzig), 2000, 9 (03): : 227 - 246