Performance of a hybrid heating system based on enhanced deep borehole heat exchanger and solar energy

被引:0
|
作者
He, Yujiang [1 ,2 ]
Bu, Xianbiao [3 ]
机构
[1] Chinese Acad Geol Sci, Inst Hydrogeol & Environm Geol, Shijiazhuang 050061, Hebei, Peoples R China
[2] Minist Nat Resources, Technol Innovat Ctr Geothermal & Hot Dry Rock Exp, Shijiazhuang 050061, Hebei, Peoples R China
[3] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Depleted oil and gas reservoir; Enhanced deep borehole heat exchanger; Leakage formation; Solar energy; Hybrid heating system; ABANDONED OIL-WELLS; GEOTHERMAL-ENERGY; GAS-WELLS; SIMULATION; EXTRACTION; MODEL;
D O I
10.1186/s40517-022-00236-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Deep borehole heat exchanger (DBHE) is a closed loop system without the problem of fluid losses, scale formation and corrosion; however, low rock thermal conductivity limits its performance. Enlightened by drilling mud loss in oil and gas industry, here an enhanced DBHE (EDBHE) is proposed by filling materials with much higher thermal conductivity into leakage formation or depleted gas and oil reservoir to enhance the thermal conductivity performance of rock. Solar thermal energy is stored into EDBHE during the non-heating season to replenish the loss of heat energy extracted during the heating season. The results show that average heat mining rate for 20 years operations is, respectively, 3686.5 and 26,384.4 kW for EDBHE filled by ordinary drilling mud and by composite materials with high thermal conductivity. The percentage reduction of heat mining rate for 20 years operations for EDBHE and the hybrid system of geothermal and solar energy are, respectively, 16.1 and 5.8%, indicating that the hybrid system can make the heat mining rate more stable.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Heat transfer performance of deep borehole heat exchanger with different operation modes
    Huang, Shuai
    Zhu, Ke
    Dong, Jiankai
    Li, Ji
    Kong, Weizheng
    Jiang, Yiqiang
    Fang, Zhaohong
    RENEWABLE ENERGY, 2022, 193 : 645 - 656
  • [22] Performance study of a sustainable solar heating system based on a copper coil water to air heat exchanger for greenhouse heating
    Ihoume, I.
    Tadili, R.
    Arbaoui, N.
    Bazgaou, A.
    Idrissi, A.
    Benchrifa, M.
    Fatnassi, H.
    SOLAR ENERGY, 2022, 232 : 128 - 138
  • [23] Performance analysis of a solar heating system with the absorption heat pump and oil/water heat exchanger
    Fan, Man
    Liang, Hongbo
    You, Shijun
    Zhang, Huan
    Yin, Baoquan
    Wu, Xiaoting
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 97 - 104
  • [24] Heat transfer performance of energy pile and borehole heat exchanger: A comparative study
    Liu, Hanlong
    He, Fengchang
    Wang, Chenglong
    Bouazza, Abdelmalek
    Kong, Gangqiang
    Sun, Zhiwen
    JOURNAL OF BUILDING ENGINEERING, 2024, 97
  • [25] Numerical investigation of the deep borehole heat exchanger in medium-depth geothermal heat pump system for building space heating
    Wang, Xiaoyan
    Su, Yanmin
    Liu, Guang
    Ni, Long
    ENERGY AND BUILDINGS, 2024, 304
  • [26] Numerical investigation of the deep borehole heat exchanger in medium-depth geothermal heat pump system for building space heating
    Wang, Xiaoyan
    Su, Yanmin
    Liu, Guang
    Ni, Long
    Energy and Buildings, 2024, 304
  • [27] Numerical simulation of a Deep Borehole Heat Exchanger in the Krafla geothermal system
    Renaud, Theo
    Verdin, Patrick
    Falcone, Gioia
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 143
  • [28] Enhanced Heat Exchanger Layout for Optimum Energy Performance in Solar Thermal ORC-Based Unit
    Vittorini, Diego
    Cipollone, Roberto
    Carapellucci, Roberto
    74TH ATI NATIONAL CONGRESS: ENERGY CONVERSION: RESEARCH, INNOVATION AND DEVELOPMENT FOR INDUSTRY AND TERRITORIES, 2019, 2191
  • [29] Mathematical modeling and periodical heat extraction analysis of deep coaxial borehole heat exchanger for space heating
    Wang, Yaran
    Wang, Yeming
    You, Shijun
    Zheng, Xuejing
    Cong, Peide
    Shi, Jinkai
    Li, Bo
    Wang, Lichuan
    Wei, Shen
    ENERGY AND BUILDINGS, 2022, 265
  • [30] Study on the Influence of Borehole Heat Capacity on Deep Coaxial Borehole Heat Exchanger
    Wang, Changlong
    Fang, Han
    Wang, Xin
    Lu, Jinli
    Sun, Yanhong
    SUSTAINABILITY, 2022, 14 (04)