Joint multi-domain feature learning for image steganalysis based on CNN

被引:19
|
作者
Wang, Ze [1 ,2 ]
Chen, Mingzhi [3 ]
Yang, Yu [1 ,2 ]
Lei, Min [1 ,2 ]
Dong, Zhexuan [4 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Guizhou, Peoples R China
[2] Beijing Univ Posts & Telecommun, Lab Cyberspace Secur, Beijing 100876, Peoples R China
[3] Beijing Inst Graph Commun, Coll New Media, Beijing 102600, Peoples R China
[4] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
基金
国家重点研发计划;
关键词
Image steganalysis; Convolutional neural networks; Feature learning; Joint domain; Nonlinear detection; STEGANOGRAPHY;
D O I
10.1186/s13640-020-00513-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, researchers have been making great progress in the steganalysis technology based on convolution neural networks (CNN). However, experts ignore the contribution of nonlinear residual and joint domain detection to steganalysis, and how to detect the adaptive steganographic algorithms with low embedding rates is still challenging. In this paper, we propose a CNN steganalysis model that uses a joint domain detection mechanism and a nonlinear detection mechanism. For the nonlinear detection mechanism, based on the spatial rich model (SRM), we introduce the maximum and minimum nonlinear residual feature acquisition method into the model to adapt to the nonlinear distribution of steganography information. For the joint domain detection mechanism, we not only apply the high-pass filters from the SRM for spatial residuals, but also apply the patterns from the discrete cosine transform residual (DCTR) for transformation steganographic impacts, so as to fully capture the interference trace of spatial steganography to transform domain. We also apply a new transfer learning method to improve the model's performance. That is, we apply the low embedding rate steganography samples to initialize the model, because we think that the method makes the network more sensitive than applying high embedding rate steganography samples to initialize the model. The simulation results also confirm this assumption. Combined with the above improved methods, the detection accuracy of the model for WOW and S-UNIWARD is higher than that of SRM+EC, Ye-Net, Xu-Net, Yedroudj-Net and Zhu-Net, which is about 4 similar to 6% higher than that of the optimal Zhu-Net. The results can provide a certain reference for steganalysis and image forensics tasks.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Study on Universal Steganalysis for BMP Images based on Multi-domain Features
    Yan, Yan
    Li, Liting
    Xue, Jianbin
    Liu, Hongguo
    Zhang, Qiuyu
    ADVANCES IN MECHATRONICS AND CONTROL ENGINEERING, PTS 1-3, 2013, 278-280 : 1906 - 1909
  • [12] An improved CNN based on attention mechanism with multi-domain feature fusion for bearing fault diagnosis
    Yu, Mingzhu
    Liu, Heli
    Wang, Rengen
    Kong, Xiangwei
    Hu, Zhiyong
    Li, Xueyi
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [13] Unsupervised multi-domain image translation with domain representation learning
    Liu, Huajun
    Chen, Lei
    Sui, Haigang
    Zhu, Qing
    Lei, Dian
    Liu, Shubo
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 99
  • [14] Incremental Learning of Multi-Domain Image-to-Image Translations
    Tan, Daniel Stanley
    Lin, Yong-Xiang
    Hua, Kai-Lung
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (04) : 1526 - 1539
  • [15] Tool wear state recognition based on joint distribution adaptation of multi-domain feature
    Huang H.
    Yao J.
    Xue W.
    Lyu Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2419 - 2429
  • [16] Specific Emitter Identification Based on Multi-Domain Feature Fusion and Integrated Learning
    Qu, Ling-Zhi
    Liu, Hui
    Huang, Ke-Ju
    Yang, Jun-An
    SYMMETRY-BASEL, 2021, 13 (08):
  • [17] A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation
    Liu, Alexander H.
    Liu, Yen-Cheng
    Yeh, Yu-Ying
    Wang, Yu-Chiang Frank
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [18] Feature Passing Learning for Image Steganalysis
    Liu, Jiahao
    Jiao, Ge
    Sun, Xiyu
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2233 - 2237
  • [19] Image Block Regression Based on Feature Fusion for CNN-Based Spatial Steganalysis
    Chen, Ziqing
    Yu, Xiangyu
    Chen, Runze
    DIGITAL FORENSICS AND WATERMARKING, IWDW 2021, 2022, 13180 : 258 - 272
  • [20] Feature Norm-Based Deep Network for Multi-Domain Fashion Image Retrieval
    Zou, Xingxing
    Wong, Wai Keung
    Qian, Jianjun
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 219 - 228