1-D modeling of ion transport in rectangular nanofluidic channels

被引:2
|
作者
Liu Kun [1 ]
Ba Dechun [1 ]
Gu Xiaoguang [1 ]
Du Guangyu [1 ]
Lin Zeng [1 ]
Liu Xinghua [1 ]
Wang Zhixue [1 ]
Xiao Songwen [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110004, Peoples R China
基金
国家教育部博士点专项基金资助; 中国国家自然科学基金;
关键词
Nanofluidics; Electric double layer; Ion transport; Electric potential distribution; Flow field distribution; MICROFLUIDICS;
D O I
10.1016/j.apsusc.2011.02.131
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on the continuity hypothesis of fluid, 1-D mathematical models of ions' transport in the rectangular nanofluidic channels are established by using the Poisson-Boltzmann (PB) equation and the modified Navier-Stokes (N-S) equations. The deduced equations are solved with MATLAB software. The results show that the distribution of the electric potential and the flow field could be predicted by the parameters, such as conductivity, surface charge density, solution concentration and channel height. The relationships between the parameters and the flow characteristics of the solution are also discussed. The research will help to the accurate manipulation of the solution in the nanofluidic channels. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2157 / 2160
页数:4
相关论文
共 50 条
  • [41] Coupling ion channels to mobile nanofluidic devices (nanopipettes)
    Baker, Lane
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [42] Ion diffusion upon concentrations in open nanofluidic channels
    Chang, Chen-Ling
    Bai, John Guofeng
    Lee, Kyong-Hoon
    Chung, Jae-Hyun
    Liu, Yaling
    Liu, Wing Kam
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 11 PT A AND PT B: MICRO AND NANO SYSTEMS, 2008, : 913 - 918
  • [43] Surface Charge Modification on 2D Nanofluidic Membrane for Regulating Ion Transport
    Xie, Linhan
    Tang, Jiadong
    Qin, Runan
    Zhang, Qianqian
    Liu, Jingbing
    Jin, Yuhong
    Wang, Hao
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (04)
  • [44] Extreme Ion-Transport Inorganic 2D Membranes for Nanofluidic Applications
    Kim, Sungsoon
    Choi, Hong
    Kim, Bokyeong
    Lim, Geonwoo
    Kim, Taehoon
    Lee, Minwoo
    Ra, Hansol
    Yeom, Jihun
    Kim, Minjun
    Kim, Eohjin
    Hwang, Jiyoung
    Lee, Joo Sung
    Shim, Wooyoung
    ADVANCED MATERIALS, 2023, 35 (43)
  • [45] 1-D TRANSPORT MODEL FOR A REVERSED FIELD PINCH
    NEBEL, RA
    MILEY, GH
    MOSES, W
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 811 - 811
  • [46] PI Controllers for 1-D Nonlinear Transport Equation
    Coron, Jean-Michel
    Hayat, Amaury
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (11) : 4570 - 4582
  • [47] Tunnelling rules for electronic transport in 1-D systems
    da Silva, C. A. B.
    Nisioka, K. R.
    Moura-Moreira, M.
    Macedo, R. F.
    Del Nero, J.
    MOLECULAR PHYSICS, 2021, 119 (24)
  • [48] 2D nanofluidic vermiculite membranes with self-confinement channels and recognition sites for ultrafast lithium ion-selective transport
    Pang, Sichen
    Dai, Liheng
    Yi, Zhiyuan
    Qu, Kai
    Wang, Yixing
    Wu, Yulin
    Fang, Chuning
    Huang, Kang
    Xu, Zhi
    JOURNAL OF MEMBRANE SCIENCE, 2023, 687
  • [49] Validation of 1-D transport and sawtooth models for ITER
    Connor, JW
    Alexander, M
    Attenberger, SE
    Bateman, G
    Boucher, D
    Chudnovskij, N
    Dnestrovskij, YN
    Dorland, W
    Fukuyama, A
    Hoang, GT
    Hogeweij, DMG
    Houlberg, WA
    Kaye, SM
    Kinsey, JE
    Konings, JA
    Kotschenreuther, M
    Kritz, AH
    Leonov, VM
    Marinucci, M
    Mikkelsen, DR
    Ongena, J
    Polevoj, AR
    Romanelli, F
    Schissel, DP
    Shirai, H
    Stubberfield, PM
    Takizuka, T
    Taroni, A
    Turner, MF
    Vlad, G
    Waltz, RE
    Weiland, J
    FUSION ENERGY 1996, VOL 2, 1997, : 935 - 944
  • [50] Parameter estimation in the 1-D transport equation with advection
    Coles, C
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (12) : 1493 - 1502