机构:
Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Nabutovsky, Alexander
[1
]
Rotman, Regina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, CanadaUniv Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Rotman, Regina
[1
]
Sabourau, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
Univ Gustave Eiffel, LAMA, F-77447 Marne La Vallee, FranceUniv Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
Sabourau, Stephane
[2
,3
]
机构:
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[2] Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France
[3] Univ Gustave Eiffel, LAMA, F-77447 Marne La Vallee, France
We show that for every closed Riemannian manifold there exists a continuous family of 1-cycles (defined as finite collections of disjoint closed curves) parametrized by a sphere and sweeping out the whole manifold so that the lengths of all connected closed curves are bounded in terms of the volume (or the diameter) and the dimension n of the manifold, when n >= 3. An alternative form of this result involves a modification of Gromov's definition of waist of sweepouts, where the space of parameters can be any finite polyhedron (and not necessarily a pseudomanifold). We demonstrate that the so-defined polyhedral 1-dimensional waist of a closed Riemannian manifold is equal to its filling radius up to at most a constant factor. We also establish upper bounds for the polyhedral 1-waist of some homology classes in terms of the volume or the diameter of the ambient manifold. In addition, we provide generalizations of these results for sweepouts by polyhedra of higher dimension using the homological filling functions. Finally, we demonstrate that the filling radius and the hypersphericity of a closed Riemannian manifold can be arbitrarily far apart.
机构:
Univ. Brest, CNRS UMR 6205, Laboratoire de Mathématiques de Bretagne At-Lantique, FranceUniv. Brest, CNRS UMR 6205, Laboratoire de Mathématiques de Bretagne At-Lantique, France
Bailleul, I.
Dang, N.V.
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Université, Université Paris Cité, CNRS, IMJ-PRG, Paris,F-75005, France
Institut Universitaire de France, Paris, FranceUniv. Brest, CNRS UMR 6205, Laboratoire de Mathématiques de Bretagne At-Lantique, France
Dang, N.V.
Ferdinand, L.
论文数: 0引用数: 0
h-index: 0
机构:
Laboratoire de Physique des 2 Infinis Irène Joliot-Curie, UMR 9012, Université Paris-Saclay, Orsay, FranceUniv. Brest, CNRS UMR 6205, Laboratoire de Mathématiques de Bretagne At-Lantique, France
Ferdinand, L.
Tô, T.D.
论文数: 0引用数: 0
h-index: 0
机构:
Sorbonne Université, Université Paris Cité, CNRS, IMJ-PRG, Paris,F-75005, FranceUniv. Brest, CNRS UMR 6205, Laboratoire de Mathématiques de Bretagne At-Lantique, France