The abundance and community structure of active ammonia-oxidizing archaea and ammonia-oxidizing bacteria shape their activities and contributions in coastal wetlands

被引:35
|
作者
Wang, Chen [1 ]
Tang, Shuangyu [1 ]
He, Xiangjun [1 ]
Ji, Guodong [1 ]
机构
[1] Peking Univ, Dept Environm Engn, Minist Educ, Key Lab Water & Sediment Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
AOA; AOB; Ammonia oxidizing activity; Coastal wetlands; NITROSOSPHAERA-VIENNENSIS; OXIDATION; SOIL; NITRIFICATION; CULTIVATION; MULTIFORMIS; PROKARYOTES; SEDIMENTS; RESPONSES; DYNAMICS;
D O I
10.1016/j.watres.2019.115464
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aerobic ammonia oxidation, an important part of the global nitrogen cycle, is thought to be jointly driven by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in coastal wetlands. However, the activities and contributions of AOA and AOB in coastal wetlands have remained largely unknown. Here, we investigated the oxidation capability of AOA and AOB in four types of typical coastal wetlands (paddy, estuary, shallow and reed wetland) in the Bohai region in China using DNA-based stable-isotope probing (DNA-SIP), quantitative PCR and high -throughput sequencing techniques. We found that the community structure of AOB varied substantially, and the AOA structure was more stable across different coastal wetlands. The rate of AOA was 0.12, 0.84, 0.45 and 0.93 mu g N g(-1) soil d(-1) in paddy, estuary, shallow and reed wetlands, and the rate of AOB was 5.61,10.72, 0.74 and 1.16 mu g N g(-1) soil d(-1), respectively. We found that the contribution of AOA gradually increased from paddy to estuary to shallow wetland and finally to reed wetland, with values of 2.03%, 7.25%, 37.53% and 44.51%, respectively. Our results provide new insight into the mechanisms of the differences in activities and the contributions of AOA and AOB in different coastal wetlands, and our findings may contribute to further understanding of the global nitrogen cycle. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Lower Abundance of Ammonia-Oxidizing Archaea Than Ammonia-Oxidizing Bacteria Detected in the Subsurface Sediments of the Northern South China Sea
    Cao, Huiluo
    Hong, Yiguo
    Li, Meng
    Gu, Ji-Dong
    GEOMICROBIOLOGY JOURNAL, 2012, 29 (04) : 332 - 339
  • [22] Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems
    Al-Ajeel, Sarah
    Spasov, Emilie
    Sauder, Laura A.
    McKnight, Michelle M.
    Neufeld, Josh D.
    WATER RESEARCH X, 2022, 15
  • [23] Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments
    Meng Li
    Huiluo Cao
    Yiguo Hong
    Ji-Dong Gu
    Applied Microbiology and Biotechnology, 2011, 89 : 1243 - 1254
  • [24] Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems
    Al-Ajeel, Sarah
    Spasov, Emilie
    Sauder, Laura A.
    McKnight, Michelle M.
    Neufeld, Josh D.
    Water Research X, 2022, 15
  • [25] Ammonium Availability Affects the Ratio of Ammonia-Oxidizing Bacteria to Ammonia-Oxidizing Archaea in Simulated Creek Ecosystems
    Herrmann, Martina
    Scheibe, Andrea
    Avrahami, Sharon
    Kuesel, Kirsten
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (05) : 1896 - 1899
  • [26] Impacts of Edaphic Factors on Communities of Ammonia-Oxidizing Archaea, Ammonia-Oxidizing Bacteria and Nitrification in Tropical Soils
    de Gannes, Vidya
    Eudoxie, Gaius
    Hickey, William J.
    PLOS ONE, 2014, 9 (02):
  • [27] Ammonia-oxidizing bacteria are sensitive and not resilient to organic amendment and nitrapyrin disturbances, but ammonia-oxidizing archaea are resistant
    Tao, Rui
    Li, Jun
    Hu, Baowei
    Chu, Guixin
    GEODERMA, 2021, 384
  • [28] Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors
    Zhang, Tong
    Ye, Lin
    Tong, Amy Hin Yan
    Shao, Ming-Fei
    Lok, Si
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 91 (04) : 1215 - 1225
  • [29] Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments
    Li, Meng
    Cao, Huiluo
    Hong, Yiguo
    Gu, Ji-Dong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 89 (04) : 1243 - 1254
  • [30] Ammonia-Oxidizing Archaea (AOA) Play with Ammonia-Oxidizing Bacteria (AOB) in Nitrogen Removal from Wastewater
    Yin, Zhixuan
    Bi, Xuejun
    Xu, Chenlu
    ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL, 2018, 2018