Separation Choosability and Dense Bipartite Induced Subgraphs

被引:9
|
作者
Esperet, Louis [1 ]
Kang, Ross J. [2 ]
Thomasse, Stephan [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, G SCOP, 46 Ave Felix Viallet, F-38000 Grenoble, France
[2] Radboud Univ Nijmegen, POB 9010, NL-6500 GL Nijmegen, Netherlands
[3] Ecole Normale Super Lyon, Lab Informat Parallelisme, 46 Allee Italie, F-69364 Lyon, France
来源
COMBINATORICS PROBABILITY & COMPUTING | 2019年 / 28卷 / 05期
关键词
CHROMATIC NUMBER; GRAPHS;
D O I
10.1017/S0963548319000026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study a restricted form of list colouring, for which every pair of lists that correspond to adjacent vertices may not share more than one colour. The optimal list size such that a proper list colouring is always possible given this restriction, we call separation choosability. We show for bipartite graphs that separation choosability increases with (the logarithm of) the minimum degree. This strengthens results of Molloy and Thron and, partially, of Alon. One attempt to drop the bipartiteness assumption precipitates a natural class of Ramsey-type questions, of independent interest. For example, does every triangle-free graph of minimum degree d contain a bipartite induced subgraph of minimum degree Omega(log d) as d -> infinity?
引用
收藏
页码:720 / 732
页数:13
相关论文
共 50 条
  • [21] Finding bipartite subgraphs efficiently
    Mubayi, Dhruv
    Turan, Gyoergy
    INFORMATION PROCESSING LETTERS, 2010, 110 (05) : 174 - 177
  • [22] Bipartite subgraphs and the smallest eigenvalue
    Alon, N
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (01): : 1 - 12
  • [23] NOTE ON THE EQUITABLE CHOOSABILITY OF COMPLETE BIPARTITE GRAPHS
    Mudrock, Jeffrey A.
    Chase, Madelynn
    Thornburgh, Ezekiel
    Kadera, Isaac
    Wagstrom, Tim
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1091 - 1101
  • [24] The size of the largest bipartite subgraphs
    Erdos, P
    Gyarfas, A
    Kohayakawa, Y
    DISCRETE MATHEMATICS, 1997, 177 (1-3) : 267 - 271
  • [25] Counting sparse induced subgraphs in locally dense graphs
    Nenadov, Rajko
    EUROPEAN JOURNAL OF COMBINATORICS, 2025, 126
  • [26] Approximating Nash Equilibria and Dense Bipartite Subgraphs via an Approximate Version of Caratheodory's Theorem
    Barman, Siddharth
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 361 - 369
  • [27] A note on adaptable choosability and choosability with separation of planar graphs
    Casselgren, Carl Johan
    Granholmt, Jonas B.
    Raspaud, André
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 101 - 109
  • [28] An Efficient Algorithm for Enumerating Chordal Bipartite Induced Subgraphs in Sparse Graphs
    Kurita, Kazuhiro
    Wasa, Kunihiro
    Uno, Takeaki
    Arimura, Hiroki
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 339 - 351
  • [29] On Finding Dense Subgraphs
    Khuller, Samir
    Saha, Barna
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 597 - 608
  • [30] On vertex-disjoint complete bipartite subgraphs in a bipartite graph
    Wang, H
    GRAPHS AND COMBINATORICS, 1999, 15 (03) : 353 - 364