Dynamic Manifold Warping for View Invariant Action Recognition

被引:0
|
作者
Gong, Dian [1 ]
Medioni, Gerard [1 ]
机构
[1] Univ So Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90089 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address the problem of learning view-invariant 3D models of human motion from motion capture data, in order to recognize human actions from a monocular video sequence with arbitrary viewpoint. We propose a Spatio-Temporal Manifold (STM) model to analyze non-linear multivariate time series with latent spatial structure and apply it to recognize actions in the joint-trajectories space. Based on STM, a novel alignment algorithm Dynamic Manifold Warping (DMW) and a robust motion similarity metric are proposed for human action sequences, both in 2D and 3D. DMW extends previous works on spatia-temporal alignment by incorporating manifold learning. We evaluate and compare the approach to state-of-the-art methods on motion capture data and realistic videos. Experimental results demonstrate the effectiveness of our approach, which yields visually appealing alignment results, produces higher action recognition accuracy, and can recognize actions from arbitrary views with partial occlusion.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 50 条
  • [31] View-Invariant Action Recognition Based on Artificial Neural Networks
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) : 412 - 424
  • [32] Attention Transfer (ANT) Network for View-invariant Action Recognition
    Ji, Yanli
    Xu, Feixiang
    Yang, Yang
    Xie, Ning
    Shen, Heng Tao
    Harada, Tatsuya
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 574 - 582
  • [33] Prefix and Suffix Invariant Dynamic Time Warping
    Silva, Diego F.
    Batista, Gustavo E. A. P. A.
    Keogh, Eamonn
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1209 - 1214
  • [34] Rotation invariant hand-drawn symbol recognition based on a dynamic time warping model
    Fornes, Alicia
    Llados, Josep
    Sanchez, Gemma
    Karatzas, Dimosthenis
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2010, 13 (03) : 229 - 241
  • [35] Manifold Methods for Action Recognition
    Michalczuk, Agnieszka
    Wereszczynski, Kamil
    Segen, Jakub
    Josinski, Henryk
    Wojciechowski, Konrad
    Bak, Artur
    Wojciechowski, Slawomir
    Drabik, Aldona
    Kulbacki, Marek
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2017), PT II, 2017, 10192 : 613 - 622
  • [36] Rotation invariant hand-drawn symbol recognition based on a dynamic time warping model
    Alicia Fornés
    Josep Lladós
    Gemma Sánchez
    Dimosthenis Karatzas
    International Journal on Document Analysis and Recognition (IJDAR), 2010, 13 : 229 - 241
  • [37] Position-Invariant, Real-Time Gesture Recognition Based on Dynamic Time Warping
    Bodiroza, Sasa
    Doisy, Guillaume
    Hafner, Verena Vanessa
    PROCEEDINGS OF THE 8TH ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI 2013), 2013, : 87 - +
  • [38] View Invariant Object Recognition
    Srestasathiern, Panu
    Yilmaz, Alper
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3438 - 3441
  • [39] VIEW INVARIANT GAIT RECOGNITION
    Liu, Nini
    Tan, Yap-Peng
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1410 - 1413
  • [40] A View-invariant Skeleton Map with 3DCNN for Action Recognition
    Zhao, Yang
    Wen, Long
    Li, Shuguang
    Cheng, Hong
    Zhang, Chen
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2128 - 2132