Kelvin-Helmholtz Turbulence Associated with Collisionless Shocks in Laser Produced Plasmas

被引:34
|
作者
Kuramitsu, Y. [1 ]
Sakawa, Y. [1 ]
Dono, S. [1 ]
Gregory, C. D. [2 ]
Pikuz, S. A. [3 ]
Loupias, B. [2 ]
Koenig, M. [2 ]
Waugh, J. N. [4 ]
Woolsey, N. [4 ]
Morita, T. [1 ]
Moritaka, T. [1 ]
Sano, T. [1 ]
Matsumoto, Y. [5 ]
Mizuta, A. [6 ]
Ohnishi, N. [7 ]
Takabe, H. [1 ]
机构
[1] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
[2] Univ Paris 06, Ecole Polytech, Lab Utilisat Lasers Intenses, CNRS,CEA,UMR 7605, F-91128 Palaiseau, France
[3] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
[4] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[5] Chiba Univ, Grad Sch Sci, Inage Ku, Chiba 2638522, Japan
[6] High Energy Accelerator Res Org, Inst Particle & Nucl Studies, Tsukuba, Ibaraki 3050801, Japan
[7] Thohoku Univ, Grad Sch Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
NUMERICAL-ANALYSIS;
D O I
10.1103/PhysRevLett.108.195004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the experimental results of a turbulent electric field driven by Kelvin-Helmholtz instability associated with laser produced collisionless shock waves. By irradiating an aluminum double plane target with a high-power laser, counterstreaming plasma flows are generated. As the consequence of the two plasma interactions, two shock waves and the contact surface are excited. The shock electric field and transverse modulation of the contact surface are observed by proton radiography. Performing hydrodynamic simulations, we reproduce the time evolutions of the reverse shocks and the transverse modulation driven by Kelvin-Helmholtz instability.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The coupling mode between Kelvin-Helmholtz and resistive instabilities in compressible plasmas
    Shen, C
    Liu, ZX
    PHYSICS OF PLASMAS, 1999, 6 (07) : 2883 - 2886
  • [42] Kelvin-Helmholtz instability of magnetized plasmas with surface tension and dust particles
    Prajapati, R. P.
    Chhajlani, R. K.
    23RD NATIONAL SYMPOSIUM ON PLASMA SCIENCE AND TECHNOLOGY (PLASMA-2008), 2010, 208
  • [43] The Kelvin-Helmholtz instability of boundary-layer plasmas in the kinetic regime
    Steinbusch, Benedikt
    Gibbon, Paul
    Sydora, Richard D.
    PHYSICS OF PLASMAS, 2016, 23 (05)
  • [44] The Kelvin-Helmholtz instability in compressible plasmas with magnetic field shear.
    González, AG
    González, M
    Gratton, J
    PLASMA PHYSICS, 2001, 563 : 47 - 52
  • [45] Excitations of tearing mode and Kelvin-Helmholtz mode in rotating cylindrical plasmas
    Bi Hai-Liang
    Wei Lai
    Fan Dong-Mei
    Zheng Shu
    Wang Zheng-Xiong
    ACTA PHYSICA SINICA, 2016, 65 (22)
  • [46] Weak collisionless shocks in laser-plasmas
    Cairns, R. A.
    Bingham, R.
    Trines, R. G. M.
    Norreys, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (04)
  • [47] A case study of the evolution of a Kelvin-Helmholtz wave and turbulence in noctilucent clouds
    Dalin, P.
    Pertsev, N.
    Frandsen, S.
    Hansen, O.
    Andersen, H.
    Dubietis, A.
    Balciunas, R.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2010, 72 (14-15) : 1129 - 1138
  • [48] Experimental Observation of Ion-Ion Acoustic Instability Associated with Collisionless Shocks in Laser-produced Plasmas
    Jiao, J. L.
    He, S. K.
    Zhuo, H. B.
    Qiao, B.
    Yu, M. Y.
    Zhang, B.
    Deng, Z. G.
    Lu, F.
    Zhou, K. N.
    Wang, X. D.
    Xie, N.
    Yang, L.
    Zhang, F. Q.
    Zhou, W. M.
    Gu, Y. Q.
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 883 (02)
  • [49] The Role of Ambient Turbulence in Canopy Wave Generation by Kelvin-Helmholtz Instability
    Smyth, W. D.
    Mayor, S. D.
    Lian, Q.
    BOUNDARY-LAYER METEOROLOGY, 2023, 187 (03) : 501 - 526
  • [50] Nonlinear Wave Damping by Kelvin-Helmholtz Instability-induced Turbulence
    Hillier, Andrew
    Arregui, Inigo
    Matsumoto, Takeshi
    ASTROPHYSICAL JOURNAL, 2024, 966 (01):