Exact finite-size scaling for the random-matrix representation of bond percolation on square lattice

被引:4
|
作者
Malekan, Azadeh [1 ]
Saber, Sina [1 ]
Saberi, Abbas Ali [1 ,2 ]
机构
[1] Univ Tehran, Dept Phys, POB 14395-547, Tehran, Iran
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
关键词
LEVEL;
D O I
10.1063/5.0079323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report on the exact treatment of a random-matrix representation of a bond-percolation model on a square lattice in two dimensions with occupation probability p. The percolation problem is mapped onto a random complex matrix composed of two random real-valued matrices of elements + 1 and - 1 with probability p and 1 - p, respectively. We find that the onset of percolation transition can be detected by the emergence of power-law divergences due to the coalescence of the first two extreme eigenvalues in the thermodynamic limit. We develop a universal finite-size scaling law that fully characterizes the scaling behavior of the extreme eigenvalue's fluctuation in terms of a set of universal scaling exponents and amplitudes. We make use of the relative entropy as an index of the disparity between two distributions of the first and second-largest extreme eigenvalues to show that its minimum underlies the scaling framework. Our study may provide an inroad for developing new methods and algorithms with diverse applications in machine learning, complex systems, and statistical physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] The birth of the infinite cluster: Finite-size scaling in percolation
    Borgs, C
    Chayes, JT
    Kesten, H
    Spencer, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) : 153 - 204
  • [22] The Birth of the Infinite Cluster:¶Finite-Size Scaling in Percolation
    C. Borgs
    J. T. Chayes
    H. Kesten
    J. Spencer
    Communications in Mathematical Physics, 2001, 224 : 153 - 204
  • [23] FINITE-SIZE BEHAVIOR OF ISING SQUARE LATTICE
    LANDAU, DP
    PHYSICAL REVIEW B, 1976, 13 (07): : 2997 - 3011
  • [24] Finite-size scaling in the driven lattice gas
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) : 281 - 322
  • [25] Finite-Size Scaling in the Driven Lattice Gas
    Sergio Caracciolo
    Andrea Gambassi
    Massimiliano Gubinelli
    Andrea Pelissetto
    Journal of Statistical Physics, 2004, 115 : 281 - 322
  • [26] Finite-size scaling in the spin-1/2 XY model on a square lattice
    Hamer, CJ
    Hövelborn, T
    Bachhuber, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (01): : 51 - 59
  • [27] Finite-size scaling on random magnetic structures
    Reis, FDAA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 257 (1-4) : 495 - 500
  • [28] Finite-size scaling on random magnetic structures
    Reis, FDAA
    PHYSICAL REVIEW B, 1997, 55 (17): : 11084 - 11087
  • [29] CRITICAL-BEHAVIOR OF THE SITE PERCOLATION MODEL ON THE SQUARE LATTICE IN A LXM GEOMETRY - MONTE-CARLO AND FINITE-SIZE SCALING STUDY
    MONETTI, RA
    ALBANO, EV
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01): : 129 - 134
  • [30] PERCOLATION UNDER ROTATIONAL CONSTRAINT - A FINITE-SIZE SCALING STUDY
    SANTRA, SB
    BOSE, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (10): : 2367 - 2375