Obstructions to deforming curves on a 3-fold, III: Deformations of curves lying on a K3 surface

被引:4
|
作者
Nasu, Hirokazu [1 ]
机构
[1] Tokai Univ, Dept Math Sci, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 2591292, Japan
关键词
Hilbert scheme; infinitesimal deformation; obstruction; K3; surface; Fano threefold; NON-REDUCED COMPONENTS; ALGEBRAIC-GEOMETRY; HILBERT SCHEME; SPACE-CURVES; CONE;
D O I
10.1142/S0129167X17500999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the deformations of a smooth curve C on a smooth projective 3-fold V, assuming the presence of a smooth surface S satisfying C subset of S subset of V. Generalizing a result of Mukai and Nasu, we give a new sufficient condition for a first order infinitesimal deformation of C in V to be primarily obstructed. In particular, when V is Fano and S is K3, we give a sufficient condition for C to be (un) obstructed in V, in terms of (-2)-curves and elliptic curves on S. Applying this result, we prove that the Hilbert scheme Hilb(sc) V-4 of smooth connected curves on a smooth quartic 3-fold V-4 subset of P-4 contains infinitely many generically non-reduced irreducible components, which are variations of Mumford's example for Hilb(sc) P-3.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] PENCILS OF MINIMAL DEGREE ON CURVES ON A K3 SURFACE
    CILIBERTO, C
    PARESCHI, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 460 : 15 - 36
  • [22] Seshadri positive curves in a smooth projective 3-fold
    Paoletti, R.
    Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 1995, 6 (04):
  • [23] Nodal curves on K3 surfaces
    Chen, Xi
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 168 - 173
  • [24] Rational curves on K3 surfaces
    Jun Li
    Christian Liedtke
    Inventiones mathematicae, 2012, 188 : 713 - 727
  • [25] CONSTRUCTION OF CURVES ON THE K3 SURFACES
    Benoist, Olivier
    ASTERISQUE, 2015, (367) : 219 - 253
  • [26] On curves on K3 surfaces, II
    Martens, Gerriet
    ARCHIV DER MATHEMATIK, 2018, 110 (01) : 35 - 43
  • [27] Rational curves on K3 surfaces
    Chen, X
    JOURNAL OF ALGEBRAIC GEOMETRY, 1999, 8 (02) : 245 - 278
  • [28] On curves on K3 surfaces, II
    Gerriet Martens
    Archiv der Mathematik, 2018, 110 : 35 - 43
  • [29] Curves and cycles on K3 surfaces
    Huybrechts, D.
    ALGEBRAIC GEOMETRY, 2014, 1 (01): : 69 - 106
  • [30] Rational curves on K3 surfaces
    Li, Jun
    Liedtke, Christian
    INVENTIONES MATHEMATICAE, 2012, 188 (03) : 713 - 727