A coupled chemotaxis-fluid model: Global existence

被引:251
|
作者
Liu, Jian-Guo [2 ,3 ]
Lorz, Alexander [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
KELLER-SEGEL MODEL; AGGREGATION;
D O I
10.1016/j.anihpc.2011.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier-Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 50 条
  • [21] Global Existence for an Attraction–Repulsion Chemotaxis-Fluid System in a Framework of Besov–Morrey type
    Abelardo Duarte-Rodríguez
    Lucas C. F. Ferreira
    Élder J. Villamizar-Roa
    Journal of Mathematical Fluid Mechanics, 2020, 22
  • [22] Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains
    Jiang, Jie
    Wu, Hao
    Zheng, Songmu
    ASYMPTOTIC ANALYSIS, 2015, 92 (3-4) : 249 - 258
  • [23] Global existence and asymptotic stability of the fractional chemotaxis-fluid system in R3
    Zhu, Shanshan
    Liu, Zuhan
    Zhou, Ling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 183 : 149 - 190
  • [24] A controllability result for a chemotaxis-fluid model
    Chaves-Silva, F. W.
    Guerrero, S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (09) : 4863 - 4905
  • [25] IMPROVED EXTENSIBILITY CRITERIA AND GLOBAL WELL-POSEDNESS OF A COUPLED CHEMOTAXIS-FLUID MODEL ON BOUNDED DOMAINS
    Fan, Jishan
    Zhao, Kun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3949 - 3967
  • [26] Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5867 - 5894
  • [27] Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source
    Lin, Yina
    Zhang, Qian
    Zhou, Meng
    AIMS MATHEMATICS, 2022, 7 (04): : 7212 - 7233
  • [28] TIME PERIODIC SOLUTION TO A COUPLED CHEMOTAXIS-FLUID MODEL WITH POROUS MEDIUM DIFFUSION
    Huang, Jiapeng
    Jin, Chunhua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (09) : 5415 - 5439
  • [29] Large time periodic solutions to coupled chemotaxis-fluid models
    Jin, Chunhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [30] A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion
    Chamoun, Georges
    Saad, Mazen
    Talhouk, Raafat
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (09) : 1052 - 1070