Graded semisimple algebras are symmetric

被引:1
|
作者
Dascalescu, S. [1 ,2 ]
Nastasescu, C. [1 ,3 ]
Nastasescu, L. [1 ,3 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
[2] Univ Bucharest, ICUB, Bucharest, Romania
[3] Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
关键词
Graded algebra; Frobenius algebra; Symmetric algebra; Graded division algebra; Crossed product; Graded semisimple algebra; FROBENIUS ALGEBRAS;
D O I
10.1016/j.jalgebra.2017.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graded symmetric algebras, which are the symmetric monoids in the monoidal category of vector spaces graded by a group. We show that a finite dimensional graded semisimple algebra is graded symmetric. The center of a symmetric algebra is not necessarily symmetric, but we prove that the center of a finite dimensional graded division algebra is symmetric, provided that the order of the grading group is not divisible by the characteristic of the base field. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 50 条
  • [41] Semisimple strongly graded rings
    Aljadeff, E
    Ginosar, Y
    del Río, A
    JOURNAL OF ALGEBRA, 2002, 256 (01) : 111 - 125
  • [42] LOCAL AUTOMORPHISMS OF SEMISIMPLE ALGEBRAS AND GROUP ALGEBRAS
    Wang Dengyin
    Guan Qi
    Zhang Dongju
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1600 - 1612
  • [43] ON SEMISIMPLE ALTERNATIVE LOOP ALGEBRAS
    DEBARROS, LGX
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) : 3995 - 4011
  • [44] Projections of Semisimple Lie Algebras
    A. G. Gein
    Algebra and Logic, 2019, 58 : 103 - 114
  • [45] SEMISIMPLE HOPF-ALGEBRAS
    LARSON, RG
    RADFORD, DE
    JOURNAL OF ALGEBRA, 1995, 171 (01) : 5 - 35
  • [46] On Derivations of Semisimple Leibniz Algebras
    I. S. Rakhimov
    K. K. Masutova
    B. A. Omirov
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 295 - 306
  • [47] On the isomorphism of semisimple group algebras
    Nachev, NA
    Mollov, TZ
    HOUSTON JOURNAL OF MATHEMATICS, 1997, 23 (01): : 13 - 20
  • [48] Projections of Semisimple Lie Algebras
    Gein, A. G.
    ALGEBRA AND LOGIC, 2019, 58 (02) : 103 - 114
  • [49] Semisimple varieties of modal algebras
    Kowalski T.
    Kracht M.
    Studia Logica, 2006, 83 (1-3) : 351 - 363
  • [50] SEMISIMPLE TRIANGULAR AF ALGEBRAS
    DONSIG, AP
    JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) : 323 - 349