机构:
Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Univ Bucharest, ICUB, Bucharest, RomaniaUniv Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Dascalescu, S.
[1
,2
]
Nastasescu, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, RomaniaUniv Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Nastasescu, C.
[1
,3
]
Nastasescu, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, RomaniaUniv Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
Nastasescu, L.
[1
,3
]
机构:
[1] Univ Bucharest, Fac Math & Comp Sci, Str Acad 14, RO-010014 Bucharest 1, Romania
[2] Univ Bucharest, ICUB, Bucharest, Romania
[3] Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
We study graded symmetric algebras, which are the symmetric monoids in the monoidal category of vector spaces graded by a group. We show that a finite dimensional graded semisimple algebra is graded symmetric. The center of a symmetric algebra is not necessarily symmetric, but we prove that the center of a finite dimensional graded division algebra is symmetric, provided that the order of the grading group is not divisible by the characteristic of the base field. (c) 2017 Elsevier Inc. All rights reserved.
机构:
Department of Linguistics, UCLA, 3125 Campbell Hall, Los Angeles, CA 90095-1543Research School of Information Sciences and Engineering, Australian National University, Canberra