Bound states for a coupled Schrodinger system

被引:187
|
作者
Bartsch, Thomas [1 ]
Wang, Zhi-Qiang [2 ]
Wei, Juncheng [3 ]
机构
[1] Univ Giessen, Math Inst, D-35392 Giessen, Germany
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[3] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
Bound states; coupled Schrodinger equations; global bifurcation;
D O I
10.1007/s11784-007-0033-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the existence of bound states for the coupled elliptic system Delta u(1) - lambda(1)u(1) + mu(1)u(1)(3) + beta u(2)(2)u(1) = 0 in R(n), Delta u(2) - lambda(2)u(2) + mu(2)u(2)(3) + beta u(1)(2)u(2) = 0 in R(n), u(1) > 0, u(2) > 0, u(1), u(2) is an element of H(1)(R(n)), where n <= 3. Using the fixed point index in cones we prove the existence of a five-dimensional continuum C subset of R(+)(5) x H(1)(R(n)) x H(1)(R(n)) of solutions (lambda(1), lambda(2), mu(1), mu(2), beta, u(1), u(2)) bifurcating from the set of semipositive solutions (where u(1) = 0 or u(2) = 0) and investigate the parameter range covered by C.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 50 条
  • [31] Existence and Concentration of Semiclassical Bound States for a Quasilinear Schrodinger-Poisson System
    Ramos, Gustavo de Paula
    Siciliano, Gaetano
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (06)
  • [32] POSITIVE BOUND STATES FOR FRACTIONAL SCHRODINGER-POISSON SYSTEM WITH CRITICAL EXPONENT
    Sun, Xia
    Teng, Kaimin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3735 - 3768
  • [33] Multi-bump bound states for a nonlinear Schrodinger system with electromagnetic fields
    Fu, Shengmao
    Jiao, Yujuan
    Tang, Zhongwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 239 - 259
  • [34] Uniqueness of positive bound states with multiple bumps for Schrodinger-Poisson system
    Li, Benniao
    Long, Wei
    Tang, Zhongwei
    Yang, Jinge
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [35] ON THE ELEMENTARY SCHRODINGER BOUND-STATES AND THEIR MULTIPLETS
    ZNOJIL, M
    LEACH, PGL
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) : 2785 - 2794
  • [36] APPLICABILITY OF THE SCHRODINGER PERTURBATION THEORY TO BOUND STATES
    HAUSMANN, K
    MACKE, W
    ZIESCHE, P
    PHYSICS LETTERS, 1964, 10 (01): : 73 - 73
  • [37] BOUND SOLITONS AND BREATHERS FOR THE GENERALIZED COUPLED NONLINEAR SCHRODINGER-MAXWELL-BLOCH SYSTEM
    Guo, Rui
    Hao, Hui-Qin
    Zhang, Ling-Ling
    MODERN PHYSICS LETTERS B, 2013, 27 (17):
  • [38] On the energy of bound states for magnetic Schrodinger operators
    Fournais, Soren
    Kachmar, Ayman
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 233 - 255
  • [39] The general solution of the Schrodinger equation for bound states
    Janavicius, A. J.
    Zilinskas, K.
    CANADIAN JOURNAL OF PHYSICS, 2013, 91 (05) : 378 - 381
  • [40] An estimate on the number of bound states of Schrodinger operators
    Sugimura, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (01) : 120 - 129