Semicontinuity of trajectory attractors with respect to exponents for p-Laplacian equation

被引:0
|
作者
Samprogna, Rodrigo A. A. [1 ]
Pires, Leonardo [2 ]
机构
[1] Univ Fed Alfenas, Inst Ciencia & Tecnol, Campus Pocos de Calda, Rod Jose Aurelio Vilela 11, BR-37715400 Pocos De Caldas, MG, Brazil
[2] Univ Estadual Ponta Grossa, Dept Matemat & Estat, Campus Uvaranas, Av Gen Carlos Cavalcanti 4748, BR- 84030900 Ponta Grossa, PR, Brazil
关键词
ASYMPTOTIC-BEHAVIOR; GLOBAL ATTRACTORS;
D O I
10.1063/5.0109092
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we are concerned with the perturbation of trajectory attractors for dissipative non autonomous p-Laplacian problems with dynamic boundary conditions and no guarantee of the uniqueness of solutions. We prove that under standard conditions, the family of trajectory attractors is upper semicontinuous in the topology of the trajectory space.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] PULLBACK RANDOM ATTRACTORS FOR FRACTIONAL STOCHASTIC p-LAPLACIAN EQUATION WITH DELAY AND MULTIPLICATIVE NOISE
    Zhang, Xuping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1695 - 1724
  • [22] EXISTENCE AND MULTIPLICITY RESULTS FOR THE FRACTIONAL p-LAPLACIAN EQUATION WITH HARDY-SOBOLEV EXPONENTS
    Ning, Gaixia
    Wang, Zhiyong
    Zhang, Jihui
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (01): : 87 - 114
  • [23] CONTINUITY OF THE VARIATIONAL EIGENVALUES OF THE p-LAPLACIAN WITH RESPECT TO p
    Parini, Enea
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 376 - 381
  • [24] Existence and upper semicontinuity of global attractors for p(x)-Laplacian systems
    Simsen, Jacson
    Simsen, Mariza Stefanello
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 23 - 38
  • [25] Global attractors for the p-Laplacian equations with nonregular data
    Niu, Weisheng
    Zhong, Chengkui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) : 123 - 135
  • [26] Critical Fractional p-Laplacian System with Negative Exponents
    Zhu, Qinghao
    Qi, Jianming
    JOURNAL OF FUNCTION SPACES, 2023, 2023
  • [27] Nodal solutions of a p-Laplacian equation
    Bartsch, T
    Liu, ZL
    Weth, T
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 : 129 - 152
  • [28] On the logistic equation for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Papageorgiou, Nikolaos S. S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1451 - 1468
  • [29] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334
  • [30] Radial solutions for the p-Laplacian equation
    Bachar, Imed
    Ben Othman, Sonia
    Maagli, Habib
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2198 - 2205