Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts

被引:3
|
作者
Tang, Yi-Ching [1 ]
Powell, Reid T. [2 ]
Gottlieb, Assaf [1 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[2] Texas A&M Univ, Ctr Translat Canc Res, Houston, TX 77030 USA
关键词
HISTONE DEACETYLASES; CANCER; SENSITIVITY; DISCOVERY;
D O I
10.1038/s41598-022-20646-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A computational framework for removing mouse contamination in tumors sequenced from patient-derived xenografts
    Amin-Mansour, Ali
    Jane-Valbuena, Judit
    Mu, Xinmeng Jasmine
    Garraway, Levi
    CANCER RESEARCH, 2017, 77
  • [42] Patient-by-Patient Deep Transfer Learning for Drug-Response Profiling Using Confocal Fluorescence Microscopy of Pediatric Patient-Derived Tumor-Cell Spheroids
    Berker, Yannick
    ElHarouni, Dina
    Peterziel, Heike
    Fiesel, Petra
    Witt, Olaf
    Oehme, Ina
    Schlesner, Matthias
    Oppermann, Sina
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3981 - 3999
  • [43] Examining molecular landscape and drug sensitivity profiles of patient-derived xenografts from resected brain metastases.
    Morikawa, Aki
    Rastogi, Tusharika
    Ulintz, Peter
    Serhan, Habib
    Nieblas-Bedolla, Edwin
    Heth, Jason
    Cheng, Xu
    Bao, Liwei
    Udager, Aaron M.
    Soellner, Matthew
    Merrill, Nathan
    Merajver, Sofia Diana
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (23_SUPPL) : 28 - 28
  • [44] Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines
    Rieko Oyama
    Mami Takahashi
    Akihiko Yoshida
    Marimu Sakumoto
    Yoko Takai
    Fusako Kito
    Kumiko Shiozawa
    Zhiwei Qiao
    Yasuhito Arai
    Tatsuhiro Shibata
    Yoshihiro Araki
    Makoto Endo
    Akira Kawai
    Tadashi Kondo
    Scientific Reports, 7
  • [45] Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines
    Oyama, Rieko
    Takahashi, Mami
    Yoshida, Akihiko
    Sakumoto, Marimu
    Takai, Yoko
    Kito, Fusako
    Shiozawa, Kumiko
    Qiao, Zhiwei
    Arai, Yasuhito
    Shibata, Tatsuhiro
    Araki, Yoshihiro
    Endo, Makoto
    Kawai, Akira
    Kondo, Tadashi
    SCIENTIFIC REPORTS, 2017, 7
  • [46] Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines
    Garman, Bradley
    Anastopoulos, Ioannis N.
    Krepler, Clemens
    Brafford, Patricia
    Sproesser, Katrin
    Jiang, Yuchao
    Wubbenhorst, Bradley
    Amaravadi, Ravi
    Bennett, Joseph
    Beqiri, Marilda
    Elder, David
    Flaherty, Keith T.
    Frederick, Dennie T.
    Gangadhar, Tara C.
    Guarino, Michael
    Hoon, David
    Karakousis, Giorgos
    Liu, Qin
    Mitra, Nandita
    Petrelli, Nicholas J.
    Schuchter, Lynn
    Shannan, Batool
    Shields, Carol L.
    Wargo, Jennifer
    Wenz, Brandon
    Wilson, Melissa A.
    Xiao, Min
    Xu, Wei
    Xu, Xaiowei
    Yin, Xiangfan
    Zhang, Nancy R.
    Davies, Michael A.
    Herlyn, Meenhard
    Nathanson, Katherine L.
    CELL REPORTS, 2017, 21 (07): : 1936 - 1952
  • [47] Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer
    Hao, Chuncheng
    Wang, Li
    Peng, Shaohua
    Cao, Mengru
    Li, Hongyu
    Hu, Jing
    Huang, Xiao
    Liu, Wei
    Zhang, Hui
    Wu, Shuhong
    Pataer, Apar
    Heymach, John V.
    Eterovic, Agda Karina
    Zhang, Qingxiu
    Shaw, Kenna R.
    Chen, Ken
    Futreal, Andrew
    Wang, Michael
    Hofstetter, Wayne
    Mehran, Reza
    Rice, David
    Roth, Jack A.
    Sepesi, Boris
    Swisher, Stephen G.
    Vaporciyan, Ara
    Walsh, Garrett L.
    Johnson, Faye M.
    Fang, Bingliang
    CANCER LETTERS, 2015, 357 (01) : 179 - 185
  • [48] Establishment of African American prostate cancer patient-derived primary cell lines and xenografts.
    Patierno, Brendon
    Glover, Wayne
    Ribar, Thomas
    Kittles, Rick
    Foo, Wen-Chi
    McCall, Shannon
    Huang, Jiaoti
    George, Daniel
    Freedman, Jennifer
    Patierno, Steven
    Wood, Kris
    Hsu, David
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2018, 27 (07) : 96 - 96
  • [49] Drug discovery for sarcoma: genomic analysis and drug screening in patient-derived cell lines
    Noguchi, Rei
    Yoshimatsu, Yuki
    Osaki, Julia
    Adachi, Yuki
    Iwata, Shuhei
    Yanagihara, Kazuyoshi
    Kawai, Akira
    Kondo, Tadashi
    CANCER SCIENCE, 2025, 116 : 704 - 704
  • [50] Developing Model Systems of Neuroendocrine Tumors: Cell Lines and Patient-Derived Xenograft (PDX) Tumors
    Kaemmer, Courtney
    Howe, James
    Galbraith, Joseph
    Knudson, C. Michael
    Darbro, Benjamin
    Milosavljevic, Tanja
    Woltering, Eugene
    Wen, Kuo-Kuang
    Wu, Meng
    Quelle, Dawn
    PANCREAS, 2018, 47 (03) : 343 - 343