Quantum query complexity for qutrits

被引:12
|
作者
Tamir, Boaz [1 ]
机构
[1] Bar Ilan Univ, Dept HPS, Ramat Gan, Israel
来源
PHYSICAL REVIEW A | 2008年 / 77卷 / 02期
关键词
Binary decision diagrams - Function evaluation - Query processing - Work function;
D O I
10.1103/PhysRevA.77.022326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compute lower bounds for the exact quantum query complexity of a ternary function f. The lower bound is of order O(log(3)(n)). In case f is symmetric on a sphere then the lower bound is of order O(root n). This work is a natural continuation of the work of Beals, Buhrman, Cleve, Mosca, and de Wolf on lower limits for binary functions.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Exact Quantum 1-Query Algorithms and Complexity
    Qiu, Daowen
    Xu, Guoliang
    SPIN, 2021, 11 (03)
  • [42] A strong direct product theorem for quantum query complexity
    Lee, Troy
    Roland, Jeremie
    2012 IEEE 27TH ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2012, : 236 - 246
  • [43] A strong direct product theorem for quantum query complexity
    Troy Lee
    Jérémie Roland
    computational complexity, 2013, 22 : 429 - 462
  • [44] Characterization of non-deterministic quantum query and quantum communication complexity
    de Wolf, R
    15TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2000, : 271 - 278
  • [45] Polynomial degree vs. quantum query complexity
    Ambainis, A
    44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, : 230 - 239
  • [46] The quantum query complexity of the hidden subgroup problem is polynomial
    Ettinger, M
    Hoyer, P
    Knill, E
    INFORMATION PROCESSING LETTERS, 2004, 91 (01) : 43 - 48
  • [47] The Quantum Query Complexity of Read-Many Formulas
    Childs, Andrew M.
    Kimmel, Shelby
    Kothari, Robin
    ALGORITHMS - ESA 2012, 2012, 7501 : 337 - 348
  • [48] On the exact quantum query complexity of MOD and EXACT functions
    Yao, Penghui
    Ye, Zekun
    FRONTIERS OF COMPUTER SCIENCE, 2025, 19 (04)
  • [49] A strong direct product theorem for quantum query complexity
    Lee, Troy
    Roland, Jeremie
    COMPUTATIONAL COMPLEXITY, 2013, 22 (02) : 429 - 462
  • [50] Sharp quantum versus classical query complexity separations
    de Beaudrap, JN
    Cleve, R
    Watrous, J
    ALGORITHMICA, 2002, 34 (04) : 449 - 461