On the clique number of Paley graphs of prime power order

被引:13
|
作者
Yip, Chi Hoi [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
Paley graph; Stepanov's method; Clique number; Binomial coefficient;
D O I
10.1016/j.ffa.2021.101930
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finding a reasonably good upper bound for the clique number of Paley graphs is an open problem in additive combinatorics. A recent breakthrough by Hanson and Petridis using Stepanov's method gives an improved upper bound on Paley graphs defined on a prime field F-p, where p equivalent to 1 (mod 4). We extend their idea to the finite field F-q, where q = p(2s+1) for a prime p equivalent to 1 (mod 4) and a non-negative integer s. We show the clique number of the Paley graph over Fp2 epsilon+1 is at most min (p(s)inverted right perpendicular root p/2inverted left perpendicular, root q/2 + p(s)+1/4 + root 2p/32p(s-1). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] On graphs with equal coprime index and clique number
    Patil, Chetan
    Khandekar, Nilesh
    Joshi, Vinayak
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (03) : 235 - 243
  • [32] The clique number and some Hamiltonian properties of graphs
    Li, Rao
    CONTRIBUTIONS TO MATHEMATICS, 2021, 4 : 20 - 22
  • [33] The Zagreb indices of graphs with a given clique number
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Appl Math Lett, 6 (1026-1030):
  • [34] A New Spectral Bound on the Clique Number of Graphs
    Bulo, Samuel Rota
    Pelillo, Marcello
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2010, 6218 : 680 - 689
  • [35] On Local Connectivity of Graphs with Given Clique Number
    holtkamp, Andreas
    Volkmann, Lutz
    JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 192 - 197
  • [36] NoteOn the Structure of Graphs with Bounded Clique Number
    Stephan Brandt
    Combinatorica, 2003, 23 : 693 - 696
  • [37] CHROMATIC NUMBER VERSUS COCHROMATIC NUMBER IN GRAPHS WITH BOUNDED CLIQUE NUMBER
    ERDOS, P
    GIMBEL, J
    STRAIGHT, HJ
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 235 - 240
  • [38] Spectral extrema of graphs with bounded clique number and matching number
    Wang, Hongyu
    Hou, Xinmin
    Ma, Yue
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 669 : 125 - 135
  • [39] Clique-transversal number in cubic graphs
    Shan, Erfang
    Liang, Zuosong
    Cheng, T. C. E.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02): : 115 - 123
  • [40] Clique number and distance spectral radii of graphs
    Zhai, Mingqing
    Yu, Guanglong
    Shu, Jinlong
    ARS COMBINATORIA, 2012, 104 : 385 - 392