Inverse problems for partition functions

被引:2
|
作者
Yang, YF [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.4153/CJM-2001-035-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(w)(n) be the weighted partition function defined by the generating function Sigma (infinity)(n=0) p(w)(n)x(n) = Pi (infinity)(m=1) (1 - x(m))(-w(m)), where w(m) is a non-negative arithmetic function. Let P-w(u) = Sigma (n less than or equal tou) p(w)(n) and N-w(u) = Sigma (n less than or equal tou) w(n) be the summatory functions for p(w)(n) and w(n), respectively. Generalizing results of G. A. Freiman and E. E. Kohlbecker, we show that, for a large class of functions Phi (u) and lambda (u), an estimate for P-w(u) of the form log P-w(u) = Phi (u){1 + Ou(1/lambda (u)) } (u --> infinity) implies an estimate for N-w(u) of the form N-w(u) = Phi* (u){1 + O (1/log lambda (u)) } (u --> infinity) with a suitable function Phi* (u) defined in terms of Phi (u). We apply this result and related results to obtain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition functions.
引用
收藏
页码:866 / 896
页数:31
相关论文
共 50 条
  • [41] Congruences for partition functions
    Eichhorn, D
    Ono, K
    ANALYTIC NUMBER THEORY, VOL 1: PROCEEDINGS OF A CONFERENCE IN HONOR OF HEINI HALBERSTAM, 1996, 138 : 309 - 321
  • [42] Partition zeta functions
    Schneider, Robert
    RESEARCH IN NUMBER THEORY, 2016, 2
  • [43] Method of inverse functions for solution of structure-property relationship problems
    E. A. Smolenskii
    A. N. Ryzhov
    V. M. Bavykin
    I. V. Chuvaeva
    A. L. Lapidus
    Doklady Chemistry, 2007, 417 : 267 - 272
  • [44] Inverse Boundary-Value Problems of Cauchy Type for Harmonic Functions
    Abubakirov, N. R.
    Aksent'ev, L. A.
    RUSSIAN MATHEMATICS, 2012, 56 (12) : 71 - 75
  • [45] A new approach for solving inverse reliability problems with implicit response functions
    Cheng, Jin
    Zhang, Jie
    Cai, C. S.
    Xiao, Ru-Cheng
    ENGINEERING STRUCTURES, 2007, 29 (01) : 71 - 79
  • [46] The solution of nonlinear direct and inverse problems for beam by means of the Trefftz functions
    Maciag, Artur
    Pawinska, Anna
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2022, 92
  • [47] INVERSE SCATTERING PROBLEMS - A STUDY IN TERMS OF THE ZEROS OF ENTIRE-FUNCTIONS
    NIETOVESPERINAS, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) : 2109 - 2115
  • [48] SOLVING DIRECT AND INVERSE PROBLEMS OF PLATE VIBRATION BY USING THE TREFFTZ FUNCTIONS
    Maciag, Artur
    Pawinska, Anna
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2013, 51 (03) : 543 - 552
  • [49] On the Green's Functions Technique for the Numerical Solution of Inverse Boundary Problems
    Chapko, Roman
    2016 IEEE INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY (MMET), 2016, : 414 - 417
  • [50] Method of inverse functions for solution of structure-property relationship problems
    Smolenskii, E. A.
    Ryzhov, A. N.
    Bavykin, V. M.
    Chuvaeva, I. V.
    Lapidus, A. L.
    DOKLADY CHEMISTRY, 2007, 417 (1) : 267 - 272