Let S be a nonempty set in a real topological linear space L, p is an element of S is a point of maximal visibility of S if and only if it admits a neighbourhood N in L such that S-q subset of or equal to S-p for every point q is an element of S boolean AND N, where S-x = {s is an element of S: x is visible from s via S}. For S being either open and connected or the closure of its connected interior, it is shown that the kernel of S is the set of all maximal visibility points of S. Planar examples reveal that the topological assumptions on S are necessary. This substantially strengthens a recent result of Toranzos and Forte Cunto.
机构:
Departament of Mathematics and Informatics, Moldova State University, MD 2009 ChişinǎuDepartament of Mathematics and Informatics, Moldova State University, MD 2009 Chişinǎu
机构:
Departamento de Matemática, Universidad de Buenos Aires, Ciudad UniversitariaDepartamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria
Toranzos F.A.
Cunto A.F.
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidad de Buenos Aires, Ciudad UniversitariaDepartamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria
机构:
Queen Mary Univ London, Sch Math Sci, London, England
Al Farabi Kazakh Natl Univ, Dept Mech & Math, Alma Ata, Kazakhstan
Inst Math & Math Modeling, Alma Ata, KazakhstanUniv Ghent, Dept Math, Ghent, Belgium