An enhanced possibilistic C-Means clustering algorithm EPCM

被引:31
|
作者
Xie, Zhenping [1 ]
Wang, Shitong [1 ,2 ]
Chung, F. L. [2 ]
机构
[1] So Yangtze Univ, Sch Informat, Wuxi, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
关键词
enhanced possibilistic C-Means clustering (EPCM); flexible hyperspheric dichotomy; outliers; image segmentation;
D O I
10.1007/s00500-007-0231-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The possibility based clustering algorithm PCM was first proposed by Krishnapuram and Keller to overcome the noise sensitivity of algorithm FCM (Fuzzy C-Means). However, PCM still suffers from the following weaknesses: (1) the clustering results are strongly dependent on parameter selection and/or initialization; (2) the clustering accuracy is often deteriorated due to its coincident clustering problem; (3) outliers can not be well labeled, which will weaken its clustering performances in real applications. In this study, in order to effectively avoid the above weaknesses, a novel enhanced PCM version (EPCM) is presented. Here, at first a novel strategy of flexible hyperspheric dichotomy is proposed which may partition a dataset into two parts: the main cluster and auxiliary cluster, and is then utilized to construct the objective function of EPCM with some novel constraints. Finally, EPCM is realized by using an alternative optimization approach. The main advantage of EPCM lies in the fact that it can not only avoid the coincident cluster problem by using the novel constraint in its objective function, but also has less noise sensitivity and higher clustering accuracy due to the introduction of the strategy of flexible hyperspheric dichotomy. Our experimental results about simulated and real datasets confirm the above conclusions.
引用
收藏
页码:593 / 611
页数:19
相关论文
共 50 条
  • [21] Sparse possibilistic c-means clustering with Lasso
    Yang, Miin-Shen
    Benjamin, Josephine B. M.
    PATTERN RECOGNITION, 2023, 138
  • [22] Improved possibilistic C-means clustering algorithms
    Zhang, JS
    Leung, YW
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (02) : 209 - 217
  • [23] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [24] Weighted possibilistic c-means clustering algorithms
    Schneider, A
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 176 - 180
  • [25] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [26] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377
  • [27] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Yukihiro Hamasuna
    Yasunori Endo
    Sadaaki Miyamoto
    Soft Computing, 2010, 14 : 487 - 494
  • [28] Possibilistic Rough Fuzzy C-Means Algorithm in Data Clustering and Image Segmentation
    Tripathy, B. K.
    Tripathy, Anurag
    Rajulu, Kosireddy Govinda
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 981 - 986
  • [29] Enhanced Possibilistic C-Means Clustering on Big Data While Ensuring Security
    Paladhi, Shriya R.
    Kumar, R. Mohan
    Reddy, A. G. Deepshika
    Vinayak, C. Y.
    Pusphavathi, T. P.
    INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGIES (ICCNCT 2018), 2019, 15 : 583 - 588
  • [30] A self-tuning version for the possibilistic fuzzy c-means clustering algorithm
    Naghi, Mirtill-Boglarka
    Kovacs, Levente
    Szilagyi, Laszlo
    2023 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, FUZZ, 2023,