Complementation in the Fremlin vector lattice symmetric tensor products-II

被引:2
|
作者
Ji, Donghai [1 ]
Navoyan, Khazhak [2 ]
Bu, Qingying [2 ]
机构
[1] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
[2] Univ Mississippi, Dept Math, University, MS 38677 USA
关键词
Fremlin tensor product; Complementation; Projection band;
D O I
10.1007/s43034-019-00020-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a vector lattice E and n is an element of N, let (circle times) over bar (n,s) E denote the n-fold Fremlin vector lattice symmetric tensor product of E. For m, n is an element of N with m > n, we prove that (i) if (circle times) over bar (m,s) E is uniformly complete then (circle times) over bar (n,s) E is positively isomorphic to a complemented subspace of (circle times) over bar (m,s) E, and (ii) if there exists phi is an element of E-+(similar to) such that ker(phi) is a projection band in E then (circle times) over bar (n,s) E is lattice isomorphic to a projection band of (circle times) over bar (m,s) E. We also obtain analogous results for the n-fold Fremlin projective symmetric tensor product (circle times) over cap (n,s,vertical bar pi vertical bar) E of E where E is a Banach lattice.
引用
收藏
页码:47 / 61
页数:15
相关论文
共 50 条
  • [41] Bayesian Generalized Sparse Symmetric Tensor-on-Vector Regression
    Guha, Sharmistha
    Guhaniyogi, Rajarshi
    TECHNOMETRICS, 2021, 63 (02) : 160 - 170
  • [42] SYMMETRIC TENSOR RANK WITH A TANGENT VECTOR: A GENERIC UNIQUENESS THEOREM
    Ballico, Edoardo
    Bernardi, Alessandra
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (10) : 3377 - 3384
  • [43] Spherical symmetric dust collapse in vector-tensor gravity
    Dale, Roberto
    Saez, Diego
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [44] The dual vector spaces of symmetric tensor powers of composition algebras
    Razon, Aharon
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [45] CONCEPTIONS ON TOPOLOGICAL TRANSITIVITY IN PRODUCTS AND SYMMETRIC PRODUCTS II
    Rojas, Anahi
    Kantun, Aura l.
    Mendez, Jose n.
    Mendez, ViCTOR M.
    GLASNIK MATEMATICKI, 2024, 59 (01) : 147 - 169
  • [46] Tensor products of Archimedean partially ordered vector spaces
    Onno van Gaans
    Anke Kalauch
    Positivity, 2010, 14 : 705 - 714
  • [47] TENSOR PRODUCTS OF AMPLE VECTOR BUNDLES IN CHARACTERISTIC P
    BARTON, CM
    AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (02) : 429 - &
  • [48] Tensor products of Archimedean partially ordered vector spaces
    van Gaans, Onno
    Kalauch, Anke
    POSITIVITY, 2010, 14 (04) : 705 - 714
  • [49] On the partially symmetric rank of tensor products of W-states and other symmetric tensors
    Ballico, Edoardo
    Bernardi, Alessandra
    Christandl, Matthias
    Gesmundo, Fulvio
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (01) : 93 - 124
  • [50] FIVE BASIC LEMMAS FOR SYMMETRIC TENSOR PRODUCTS OF NORMED SPACES
    Carando, Daniel
    Galicer, Daniel
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2011, 52 (02): : 35 - 60