30 Li+-Accommodating Covalent Organic Frameworks as Ultralong Cyclable High-Capacity Li-Ion Battery Electrodes

被引:76
|
作者
Zhai, Lipeng [1 ]
Li, Gaojie [1 ]
Yang, Xiubei [1 ]
Park, Sodam [2 ]
Han, Diandian [1 ]
Mi, Liwei [1 ]
Wang, Yanjie [1 ]
Li, Zhongping [2 ]
Lee, Sang-Young [2 ]
机构
[1] Zhongyuan Univ Technol, Ctr Adv Mat Res, Henan Key Lab Funct Salt Mat, Zhengzhou 450007, Peoples R China
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
covalent organic frameworks; high capacity; lithium-ion batteries; redox-active carbonyl sites; CATHODE MATERIALS; ENERGY-STORAGE; CRYSTALLINE; PERFORMANCE; NANOSHEETS; STABILITY;
D O I
10.1002/adfm.202108798
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox-active COF (TP-OH-COF) that can accommodate 30 Li+ ions is synthesized for potential use as an ultralong cyclable high-capacity lithium-ion battery electrode material. The TP-OH-COF is synthesized using triformylpholoroglucinol and 2,5-diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li+ ion content in the TP-OH-COF is achieved by alternately tethering redox-active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP-OH-COF delivers a high specific capacity of 764.1 mAh g(-1), and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g(-1).
引用
收藏
页数:8
相关论文
共 50 条
  • [41] MXenes as Li-Ion Battery Electrodes: Progress and Outlook
    Shetti, Nagaraj P. P.
    Mishra, Amit
    Basu, Soumen
    Aminabhavi, Tejraj M. M.
    Alodhayb, Abdullah
    Pandiaraj, Saravanan
    ENERGY & FUELS, 2023, 37 (17) : 12541 - 12557
  • [42] Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes
    Liu, Jinyun
    Zheng, Qiye
    Goodman, Matthew D.
    Zhu, Haoyue
    Kim, Jinwoo
    Krueger, Neil A.
    Ning, Hailong
    Huang, Xingjiu
    Liu, Jinhuai
    Terrones, Mauricio
    Braun, Paul V.
    ADVANCED MATERIALS, 2016, 28 (35) : 7696 - +
  • [43] A model for crack initiation in the Li-ion battery electrodes
    Panat, Rahul
    THIN SOLID FILMS, 2015, 596 : 174 - 178
  • [44] Nanomaterial-based Li-ion battery electrodes
    Li, NC
    Martin, CR
    Scrosati, B
    JOURNAL OF POWER SOURCES, 2001, 97-8 : 240 - 243
  • [45] Laser ablation of electrodes for Li-ion battery remanufacturing
    Ramoni, Monsuru Olalekan
    Zhang, Yang
    Zhang, Hong-Chao
    Ghebrab, Tewodros
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 88 (9-12): : 3067 - 3076
  • [46] Laser ablation of electrodes for Li-ion battery remanufacturing
    Monsuru Olalekan Ramoni
    Yang Zhang
    Hong-Chao Zhang
    Tewodros Ghebrab
    The International Journal of Advanced Manufacturing Technology, 2017, 88 : 3067 - 3076
  • [47] Direct in situ measurements of Li transport in Li-ion battery negative electrodes
    Harris, Stephen J.
    Timmons, Adam
    Baker, Daniel R.
    Monroe, Charles
    CHEMICAL PHYSICS LETTERS, 2010, 485 (4-6) : 265 - 274
  • [48] High capacity carbon anode for Li-ion battery - A theoretical explanation
    Tokumitsu, K
    Fujimoto, H
    Mabuchi, A
    Kasuh, T
    CARBON, 1999, 37 (10) : 1599 - 1605
  • [49] Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks
    Geng, Qianhao
    Wang, Haichao
    Wang, Jinlong
    Hong, Jie
    Sun, Weiwei
    Wu, Yang
    Wang, Yong
    SMALL METHODS, 2022, 6 (08)
  • [50] Li-ion battery capacity estimation: A geometrical approach
    Lu, Chen
    Tao, Laifa
    Fan, Huanzhen
    JOURNAL OF POWER SOURCES, 2014, 261 : 141 - 147