30 Li+-Accommodating Covalent Organic Frameworks as Ultralong Cyclable High-Capacity Li-Ion Battery Electrodes

被引:76
|
作者
Zhai, Lipeng [1 ]
Li, Gaojie [1 ]
Yang, Xiubei [1 ]
Park, Sodam [2 ]
Han, Diandian [1 ]
Mi, Liwei [1 ]
Wang, Yanjie [1 ]
Li, Zhongping [2 ]
Lee, Sang-Young [2 ]
机构
[1] Zhongyuan Univ Technol, Ctr Adv Mat Res, Henan Key Lab Funct Salt Mat, Zhengzhou 450007, Peoples R China
[2] Yonsei Univ, Dept Chem & Biomol Engn, 50 Yonsei Ro, Seoul 120749, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
covalent organic frameworks; high capacity; lithium-ion batteries; redox-active carbonyl sites; CATHODE MATERIALS; ENERGY-STORAGE; CRYSTALLINE; PERFORMANCE; NANOSHEETS; STABILITY;
D O I
10.1002/adfm.202108798
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Covalent organic frameworks (COFs) have attracted considerable attention as a facile and versatile design platform for advanced energy storage materials owing to their structural diversity, ordered porous structures, and chemical stability. In this study, a redox-active COF (TP-OH-COF) that can accommodate 30 Li+ ions is synthesized for potential use as an ultralong cyclable high-capacity lithium-ion battery electrode material. The TP-OH-COF is synthesized using triformylpholoroglucinol and 2,5-diaminohydroquinone dihydrochloride under solvothermal conditions. The accommodation of such exceptional Li+ ion content in the TP-OH-COF is achieved by alternately tethering redox-active hydroxyl and carbonyl sites on the pore walls. Owing to this unique chemical/structural feature, the TP-OH-COF delivers a high specific capacity of 764.1 mAh g(-1), and capacity retention of 63% after 8000 cycles at a fast current density of 5.0 A g(-1).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Covalent Bonding of MXene/COF Heterojunction for Ultralong Cycling Li-Ion Battery Electrodes
    Liu, Yongbiao
    Song, Yang
    Lu, Quanbing
    Zhang, Linsen
    Du, Lulu
    Yu, Shiying
    Zhang, Yongshang
    MOLECULES, 2024, 29 (12):
  • [2] Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes
    Gao, Yi-Fan
    Zhou, Min
    ACTA MECHANICA SINICA, 2012, 28 (04) : 1068 - 1077
  • [3] Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes
    Yi-Fan Gao
    Min Zhou
    Acta Mechanica Sinica, 2012, 28 : 1068 - 1077
  • [4] Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes
    Yi-Fan Gao · Min Zhou The George W. Woodruff School of Mechanical Engineering
    Acta Mechanica Sinica, 2012, (04) : 1068 - 1077
  • [5] Cyclable lithium and capacity loss in Li-ion cells
    Christensen, J
    Newman, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) : A818 - A829
  • [6] Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity
    Hu, Yiming
    Dunlap, Nathan
    Wan, Shun
    Lu, Shuanglong
    Huang, Shaofeng
    Sellinger, Isaac
    Ortiz, Michael
    Jin, Yinghua
    Lee, Se-hee
    Zhang, Wei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (18) : 7518 - 7525
  • [7] A high-capacity Li-ion/Li-oxygen hybrid cathode
    Wang, Duo
    Shen, Yue
    Hong, Kunlei
    Huang, Qiuan
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (26) : 13628 - 13631
  • [8] Computational Modeling of Electrochemomechanics of High-Capacity Composite Electrodes in Li-Ion Batteries
    Shah, Sameep Rajubhai
    de Vasconcelos, Luize Scalco
    Zhao, Kejie
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2022, 89 (08):
  • [9] Potassium Vanadate Nanobelt as a High-Capacity Cathode Material for Li-ion Battery
    Huang, Xiaobing
    Dai, Bo
    Xu, Guoqing
    He, Xiaoyu
    Zhou, Shibiao
    Chen, Yuandao
    Liu, Beiping
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (11): : 6640 - 6647
  • [10] Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes
    Kabra, Venkatesh
    Carter, Rachel
    Li, Mengya
    Fear, Conner
    Atkinson, Robert W.
    Love, Corey
    Mukherjee, Partha P.
    ACS APPLIED MATERIALS & INTERFACES, 2024, : 34830 - 34839