Randomized sequential importance sampling for estimating the number of perfect matchings in bipartite graphs

被引:2
|
作者
Diaconis, Persi [1 ]
Kolesnik, Brett [2 ]
机构
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic normality; Distributional recursion; Importance sampling; Monte Carlo methods; Perfect matchings; Randomized algorithms; RECURRENCE; PERMANENT;
D O I
10.1016/j.aam.2021.102247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study randomized sequential importance sampling algorithms for estimating the number of perfect matchings in bipartite graphs. In analyzing their performance, we establish various non-standard central limit theorems. We expect our methods to be useful for other applied problems. (c) 2021 Published by Elsevier Inc.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Z-transformation graphs of perfect matchings of plane bipartite graphs
    Zhang, HP
    Zhang, FJ
    Yao, HY
    DISCRETE MATHEMATICS, 2004, 276 (1-3) : 393 - 404
  • [32] On the order of almost regular bipartite graphs without perfect matchings
    Volkmann, Lutz
    Zingsem, Axel
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 165 - 170
  • [33] Extremal Graphs With a Given Number of Perfect Matchings
    Hartke, Stephen G.
    Stolee, Derrick
    West, Douglas B.
    Yancey, Matthew
    JOURNAL OF GRAPH THEORY, 2013, 73 (04) : 449 - 468
  • [34] Perfect matchings in inhomogeneous random bipartite graphs in random environment
    Bochi, Jairo
    Iommi, Godofredo
    Ponce, Mario
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (02): : 263 - 272
  • [35] Combinatorics of perfect matchings in plane bipartite graphs and application to tilings
    Fournier, JC
    THEORETICAL COMPUTER SCIENCE, 2003, 303 (2-3) : 333 - 351
  • [36] Rainbow Perfect Matchings in Complete Bipartite Graphs: Existence and Counting
    Perarnau, Guillem
    Serra, Oriol
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (05): : 783 - 799
  • [37] Number of maximum matchings of bipartite graphs with positive surplus
    Liu, Y
    Liu, GZ
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 311 - 318
  • [38] Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey
    Zhang, Heping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2006, 56 (03) : 457 - 476
  • [39] Graphs with second smallest number of perfect matchings of line graphs
    Liu, Yan
    Zhou, Xue
    ARS COMBINATORIA, 2020, 153 : 15 - 31
  • [40] Gaussian boson sampling for perfect matchings of arbitrary graphs
    Bradler, Kamil
    Dallaire-Demers, Pierre-Luc
    Rebentrost, Patrick
    Su, Daiqin
    Weedbrook, Christian
    PHYSICAL REVIEW A, 2018, 98 (03)