Stochastic modeling of fatigue crack dynamics for on-line failure prognostics

被引:97
|
作者
Ray, A
Tangirala, S
机构
[1] Mechanical Engineering Department, Pennsylvania State University, University Park
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
D O I
10.1109/87.508893
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a nonlinear stochastic model of fatigue crack dynamics for real-time computation of the time-dependent damage rate and accumulation in mechanical structures. The model configuration allows construction of a filter for estimation of the current damage state and prediction of the remaining service life based on the underlying principle of extended Kalman filtering instead of solving the Kolmogorov forward equation. This approach is suitable for on-line damage sensing, failure prognosis, life prediction, reliability analysis, decision-making for condition-based maintenance and operation planning, and life extending control in complex dynamical systems. The model results have been verified by comparison with experimentally generated statistical data of time-dependent fatigue cracks in specimens made of 2024-T3 aluminum alloy.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 50 条
  • [31] Stochastic model of fatigue crack growth
    Vakulenko, Anna A.
    Petinov, Sergei V.
    Polezhayeva, Helena A.
    Ship Technology Research, 1994, 41 (02): : 105 - 110
  • [32] Modeling of fatigue crack propagation
    Jiang, YY
    Feng, ML
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2004, 126 (01): : 77 - 86
  • [33] STOCHASTIC MODELING OF CRACK INITIATION AND SHORT-CRACK GROWTH UNDER CREEP AND CREEP-FATIGUE CONDITIONS
    KITAMURA, T
    GHOSN, LJ
    OHTANI, R
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (02): : S35 - S42
  • [34] FATIGUE CRACK GROWTH PROGNOSIS WITH THE PARTICLE FILTER AND ON-LINE GUIDED WAVE STRUCTURAL MONITORING DATA
    Chen, Jian
    Yuan, Shenfang
    Qiu, Lei
    Ren, Yuanqiang
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 13, 2021,
  • [35] Artificial neural network technology for the data processing of on-line corrosion fatigue crack growth monitoring
    Cheng, Y
    Huang, WL
    Zhou, CY
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 1999, 76 (02) : 113 - 116
  • [36] Solution of Fokker-Planck-Kolmogrov equation in stochastic modeling of fatigue crack propagation
    Wu, Wen-Fang
    Huang, Tsan-Hua
    Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 1990, 13 (01): : 25 - 34
  • [37] Prognostics of Thermal Fatigue Failure of Solder Joints in Avionic Equipment
    Johansson, Jonas
    Leisner, Peter
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2012, 27 (04) : 16 - 24
  • [38] Modeling on-line art auction dynamics using functional data analysis
    Reddy, Srinivas K.
    Dass, Mayukh
    STATISTICAL SCIENCE, 2006, 21 (02) : 179 - 193
  • [39] On-line Adaptive Data-Driven Fault Prognostics of Complex Systems
    Liu, Datong
    Wang, Shaojun
    Peng, Yu
    Peng, Xiyuan
    IEEE AUTOTESTCON 2011: SYSTEMS READINESS TECHNOLOGY CONFERENCE, 2011, : 166 - 173
  • [40] A model-based prognostics method for fatigue crack growth in fuselage panels
    Yiwei WANG
    Christian GOGU
    Nicolas BINAUD
    Christian BES
    Jian FU
    Chinese Journal of Aeronautics , 2019, (02) : 396 - 408