A review on deep learning in medical image analysis

被引:211
|
作者
Suganyadevi, S. [1 ]
Seethalakshmi, V [1 ]
Balasamy, K. [2 ]
机构
[1] KPR Inst Engn & Technol, Dept ECE, Coimbatore, Tamil Nadu, India
[2] Dr Mahalingam Coll Engn & Technol, Dept IT, Coimbatore, Tamil Nadu, India
关键词
Deep learning; Survey; Image classes; Medical image analysis; Accuracy; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION; SEGMENTATION; REPRESENTATION; CORONAVIRUS; MASS;
D O I
10.1007/s13735-021-00218-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ongoing improvements in AI, particularly concerning deep learning techniques, are assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the quickest developing field in artificial intelligence and is effectively utilized lately in numerous areas, including medication. A brief outline is given on studies carried out on the region of application: neuro, brain, retinal, pneumonic, computerized pathology, bosom, heart, breast, bone, stomach, and musculoskeletal. For information exploration, knowledge deployment, and knowledge-based prediction, deep learning networks can be successfully applied to big data. In the field of medical image processing methods and analysis, fundamental information and state-of-the-art approaches with deep learning are presented in this paper. The primary goals of this paper are to present research on medical image processing as well as to define and implement the key guidelines that are identified and addressed.
引用
收藏
页码:19 / 38
页数:20
相关论文
共 50 条
  • [21] A survey on deep learning in medical image analysis
    Litjens, Geert
    Kooi, Thijs
    Bejnordi, Babak Ehteshami
    Setio, Arnaud Arindra Adiyoso
    Ciompi, Francesco
    Ghafoorian, Mohsen
    van der Laak, Jeroen A. W. M.
    van Ginneken, Bram
    Sanchez, Clara I.
    MEDICAL IMAGE ANALYSIS, 2017, 42 : 60 - 88
  • [22] Deep Learning Approach for Medical Image Analysis
    Adegun, Adekanmi Adeyinka
    Viriri, Serestina
    Ogundokun, Roseline Oluwaseun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [23] Editorial: Deep learning for medical image analysis
    Lu, Ke
    Wang, Fei
    Shao, Ling
    Li, Weisheng
    NEUROCOMPUTING, 2020, 392 : 121 - 123
  • [24] MEDICAL IMAGE ANALYSIS BASED ON DEEP LEARNING
    Dong, S.
    Wang, P.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 122 : 66 - 66
  • [25] Multi-task deep learning for medical image computing and analysis: A review
    Zhao, Yan
    Wang, Xiuying
    Che, Tongtong
    Bao, Guoqing
    Li, Shuyu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [26] A review of deep learning and Generative Adversarial Networks applications in medical image analysis
    Sindhura, D. N.
    Pai, Radhika M.
    Bhat, Shyamasunder N.
    Pai, Manohara M. M.
    MULTIMEDIA SYSTEMS, 2024, 30 (03)
  • [27] Insight into deep learning for glioma IDH medical image analysis: A systematic review
    Lv, Qingqing
    Liu, Yihao
    Sun, Yingnan
    Wu, Minghua
    MEDICINE, 2024, 103 (07) : E37150
  • [28] Deep Learning for Medical Image Cryptography: A Comprehensive Review
    Lata, Kusum
    Cenkeramaddi, Linga Reddy
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [29] Deep learning in medical image super resolution: a review
    Yang, Hujun
    Wang, Zhongyang
    Liu, Xinyao
    Li, Chuangang
    Xin, Junchang
    Wang, Zhiqiong
    APPLIED INTELLIGENCE, 2023, 53 (18) : 20891 - 20916
  • [30] A comprehensive review of deep learning for medical image segmentation
    Xia, Qingling
    Zheng, Hong
    Zou, Haonan
    Luo, Dinghao
    Tang, Hongan
    Li, Lingxiao
    Jiang, Bin
    NEUROCOMPUTING, 2025, 613