Contrastive Learning with Bidirectional Transformers for Sequential Recommendation

被引:22
|
作者
Du, Hanwen [1 ]
Shi, Hui [1 ]
Zhao, Pengpeng [1 ]
Wang, Deqing [2 ]
Sheng, Victor S. [3 ]
Liu, Yanchi [4 ]
Liu, Guanfeng [5 ]
Zhao, Lei [1 ]
机构
[1] Soochow Univ, Suzhou, Jiangsu, Peoples R China
[2] Beihang Univ, Beijing, Peoples R China
[3] Texas Tech Univ, Lubbock, TX 79409 USA
[4] Rutgers State Univ, New Brunswick, NJ USA
[5] Macquarie Univ, Sydney, NSW, Australia
关键词
Sequential Recommendation; Bidirectional Sequential Model; Contrastive Learning;
D O I
10.1145/3511808.3557266
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Contrastive learning with Transformer-based sequence encoder has gained predominance for sequential recommendation. It maximizes the agreements between paired sequence augmentations that share similar semantics. However, existing contrastive learning approaches in sequential recommendation mainly center upon left-to-right unidirectional Transformers as base encoders, which are suboptimal for sequential recommendation because user behaviors may not be a rigid left-to-right sequence. To tackle that, we propose a novel framework named Contrastive learning with Bidirectional Transformers for sequential recommendation (CBiT). Specifically, we first apply the slide window technique for long user sequences in bidirectional Transformers, which allows for a more fine-grained division of user sequences. Then we combine the cloze task mask and the dropout mask to generate high-quality positive samples and perform multi-pair contrastive learning, which demonstrates better performance and adaptability compared with the normal one-pair contrastive learning. Moreover, we introduce a novel dynamic loss reweighting strategy to balance between the cloze task loss and the contrastive loss. Experiment results on three public benchmark datasets show that our model outperforms state-of-the-art models for sequential recommendation. Our code is available at this link: https://github.com/hw-du/CBiT/tree/master.
引用
收藏
页码:396 / 405
页数:10
相关论文
共 50 条
  • [1] Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Yuan, Huanhuan
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8192 - 8205
  • [2] Adversarial Training and Contrastive Learning with Bidirectional Transformers for Sequence Recommendation
    He, Tao
    Liu, Xuejun
    Xing, Zhuoya
    Huang, Xiaoyang
    Xu, Zhouyin
    Wang, Yitian
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 477 - 489
  • [3] Contrastive Learning for Sequential Recommendation
    Xie, Xu
    Sun, Fei
    Liu, Zhaoyang
    Wu, Shiwen
    Gao, Jinyang
    Zhang, Jiandong
    Ding, Bolin
    Cui, Bin
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1259 - 1273
  • [4] Debiasing the Cloze Task in Sequential Recommendation with Bidirectional Transformers
    Damak, Khalil
    Khenissi, Sami
    Nasraoui, Olfa
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 273 - 282
  • [5] Equivariant Contrastive Learning for Sequential Recommendation
    Zhou, Peilin
    Gao, Jingqi
    Xie, Yueqi
    Ye, Qichen
    Hua, Yining
    Kim, Jaeboum
    Wang, Shoujin
    Kim, Sunghun
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 129 - 140
  • [6] Intent Contrastive Learning for Sequential Recommendation
    Chen, Yongjun
    Liu, Zhiwei
    Li, Jia
    McAuley, Julian
    Xiong, Caiming
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2172 - 2182
  • [7] Contrastive learning with adversarial masking for sequential recommendation
    Xiang, Rongzheng
    Huang, Jiajin
    Yang, Jian
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2025, 71
  • [8] Temporal Graph Contrastive Learning for Sequential Recommendation
    Zhang, Shengzhe
    Chen, Liyi
    Wang, Chao
    Li, Shuangli
    Xiong, Hui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 9359 - 9367
  • [9] Simple Debiased Contrastive Learning for Sequential Recommendation
    Xie, Zuxiang
    Li, Junyi
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [10] Contrastive Learning with Frequency Domain for Sequential Recommendation
    Zhang, Yichi
    Yin, Guisheng
    Dong, Yuxin
    Zhang, Liguo
    APPLIED SOFT COMPUTING, 2023, 144