Refinement of Operator-valued Reproducing Kernels

被引:0
|
作者
Zhang, Haizhang [1 ,3 ]
Xu, Yuesheng [2 ,3 ]
Zhang, Qinghui [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
vector-valued reproducing kernel Hilbert spaces; operator-valued reproducing kernels; refinement; embedding; translation invariant kernels; Hessian of Gaussian kernels; Hilbert-Schmidt kernels; numerical experiments; GRADIENTS; SPACES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the construction of a refinement kernel for a given operator-valued reproducing kernel such that the vector-valued reproducing kernel Hilbert space of the refinement kernel contains that of the given kernel as a subspace. The study is motivated from the need of updating the current operator-valued reproducing kernel in multi-task learning when underfitting or overfitting occurs. Numerical simulations confirm that the established refinement kernel method is able to meet this need. Various characterizations are provided based on feature maps and vector-valued integral representations of operator-valued reproducing kernels. Concrete examples of refining translation invariant and finite Hilbert-Schmidt operator-valued reproducing kernels are provided. Other examples include refinement of Hessian of scalar-valued translation-invariant kernels and transformation kernels. Existence and properties of operator-valued reproducing kernels preserved during the refinement process are also investigated.
引用
收藏
页码:91 / 136
页数:46
相关论文
共 50 条
  • [31] ON OPERATOR-VALUED MIXINGALES
    YIN, G
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1989, 7 (03) : 355 - 366
  • [32] Learning Operator-Valued Kernels From Multilabel Datesets With Fuzzy Rough Sets
    Wang, Zhenxin
    Chen, Degang
    Che, Xiaoya
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (04) : 1311 - 1321
  • [33] OPERATOR-VALUED NEVANLINNA-PICK KERNELS AND THE FUNCTIONAL MODELS FOR CONTRACTION OPERATORS
    BALL, JA
    KRIETE, TL
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1987, 10 (01) : 17 - 61
  • [34] Operator-valued rational functions
    Curto, Raul E.
    Hwang, In Sung
    Lee, Woo Young
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (09)
  • [35] AN OPERATOR-VALUED POISSON KERNEL
    VASILESCU, FH
    JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 110 (01) : 47 - 72
  • [36] On operator-valued spherical functions
    Stetkær, H
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) : 338 - 351
  • [37] An operator-valued Lyapunov theorem
    Plosker, Sarah
    Ramsey, Christopher
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 117 - 125
  • [38] OPERATOR-VALUED CONVOLUTION ALGEBRAS
    Bagheri-Bardi, G. A.
    Medghalchi, A. R.
    Spronk, N.
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (04): : 1023 - 1036
  • [39] ON OPERATOR-VALUED MONOTONE INDEPENDENCE
    Hasebe, Takahiro
    Saigo, Hayato
    NAGOYA MATHEMATICAL JOURNAL, 2014, 215 : 151 - 167
  • [40] OPERATOR-VALUED STOCHASTIC INTEGRALS
    KUO, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (01) : 207 - 210