Generation of synthetic sedimentgraphs

被引:0
|
作者
GraciaSanchez, J
机构
[1] Sección de Hidràulica, Instituto de Ingeniería, Univ. Nac. Auton. de México, Coyoacan 04510, Mexico, DF
来源
HYDROLOGICAL PROCESSES | 1996年 / 10卷 / 09期
关键词
sedimentgraphs; suspended sediments; hysteresis; sediment load;
D O I
10.1002/(SICI)1099-1085(199609)10:9<1181::AID-HYP369>3.0.CO;2-X
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
A procedure for deriving sedimentgraphs in watersheds is proposed. The method is based on the instantaneous unit hydrograph theory developed for flood prediction and on the convolution integral theory. This procedure could be applied to any watershed where basic physical information is available (areas, slopes, length of channels, soil type). A qualitative comparison between results obtained and those published previously produced satisfactory results. Thus it is possible to conclude that the procedure is adequate. However, it is also necessary to compare it with real field measurements.
引用
收藏
页码:1181 / 1191
页数:11
相关论文
共 50 条
  • [31] Synthetic data generation by diffusion models
    Zhu, Jun
    NATIONAL SCIENCE REVIEW, 2024, 11 (08)
  • [32] A triangular model for the generation of synthetic hyetographs
    Ellouze, Manel
    Abida, Habib
    Safi, Riadh
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2009, 54 (02): : 287 - 299
  • [33] Synthetic data generation by diffusion models
    Jun Zhu
    National Science Review, 2024, 11 (08) : 19 - 21
  • [34] On generation and analysis of synthetic iris images
    Zuo, Jinyu
    Schmid, Natalia A.
    Chen, Xiaohan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2007, 2 (01) : 77 - 90
  • [35] Synthetic fingerprint-image generation
    Cappelli, R
    Erol, A
    Maio, D
    Maltoni, D
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 471 - 474
  • [36] Synthetic data generation by probabilistic PCA
    Park, Min-Jeong
    KOREAN JOURNAL OF APPLIED STATISTICS, 2023, 36 (04) : 279 - 294
  • [37] A Reproducibility Analysis of Synthetic Population Generation
    Kim, Jooyoung
    Lee, Seungjae
    4TH INTERNATIONAL SYMPOSIUM OF TRANSPORT SIMULATION (ISTS'14) SELECTED PROCEEDINGS, 2015, 6 : 50 - 63
  • [38] Synthetic fingerprint-database generation
    Cappelli, R
    Maio, D
    Maltoni, D
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL III, PROCEEDINGS, 2002, : 744 - 747
  • [39] Synthetic Data Generation for Statistical Testing
    Soltana, Ghanem
    Sabetzadeh, Mehrdad
    Briand, Lionel C.
    PROCEEDINGS OF THE 2017 32ND IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE'17), 2017, : 872 - 882
  • [40] Replicant™ framework for synthetic data generation
    Kenul, Emily
    Black, Margaret
    Massey, Drew
    Havelka, Zachary
    Henkai, Mawia
    Gavin, Kyle
    Shellhorn, Luke
    SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035