Multiclass classification of dry beans using computer vision and machine learning techniques

被引:150
|
作者
Koklu, Murat [1 ]
Ozkan, Ilker Ali [1 ]
机构
[1] Selcuk Univ, Dept Comp Engn, Konya, Turkey
关键词
Computer vision system; Image processing; Classification of dry beans; Machine learning techniques; ARTIFICIAL NEURAL-NETWORKS; QUALITY; ORIGIN;
D O I
10.1016/j.compag.2020.105507
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
There is a wide range of genetic diversity of dry bean which is the most produced one among the edible legume crops in the world. Seed quality is definitely influential in crop production. Therefore, seed classification is essential for both marketing and production to provide the principles of sustainable agricultural systems. The primary objective of this study is to provide a method for obtaining uniform seed varieties from crop production, which is in the form of population, so the seeds are not certified as a sole variety. Thus, a computer vision system was developed to distinguish seven different registered varieties of dry beans with similar features in order to obtain uniform seed classification. For the classification model, images of 13,611 grains of 7 different registered dry beans were taken with a high-resolution camera. A user-friendly interface was designed using the MATLAB graphical user interface (GUI). Bean images obtained by computer vision system (CVS) were subjected to segmentation and feature extraction stages, and a total of 16 features; 12 dimension and 4 shape forms, were obtained from the grains. Multilayer perceptron (MLP), Support Vector Machine (SVM), k-Nearest Neighbors (kNN), Decision Tree (DT) classification models were created with 10-fold cross validation and performance metrics were compared. Overall correct classification rates have been determined as 91.73%, 93.13%, 87.92% and 92.52% for MLP, SVM, kNN and DT, respectively. The SVM classification model, which has the highest accuracy results, has classified the Barbunya, Bombay, Cali, Dermason, Horoz, Seker and Sira bean varieties with 92.36%, 100.00%, 95.03%, 94.36%, 94.92%, 94.67% and 86.84%, respectively. With these results, the demands of the producers and the customers are largely met about obtaining uniform bean varieties.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A classification system for beans using computer vision system and artificial neural networks
    Kilic, Kivanc
    Boyaci, Ismail Hakki
    Koksel, Hamit
    Kusmenoglu, Ismail
    JOURNAL OF FOOD ENGINEERING, 2007, 78 (03) : 897 - 904
  • [32] A machine learning software tool for multiclass classification
    Wang, Shangzhou
    Lu, Haohui
    Khan, Arif
    Hajati, Farshid
    Khushi, Matloob
    Uddin, Shahadat
    SOFTWARE IMPACTS, 2022, 13
  • [33] Liver Cirrhosis Stage Prediction Using Machine Learning: Multiclass Classification
    Sidana, Tejasv Singh
    Singhal, Saransh
    Gupta, Shruti
    Goel, Ruchi
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 109 - 129
  • [34] MULTICLASS CLASSIFICATION OF REMOTE SENSING IMAGES USING DEEP LEARNING TECHNIQUES
    Arshad, Tahir
    Zhang Junping
    Qingyan Wang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7234 - 7237
  • [35] Classification of Firewall Log Data Using Multiclass Machine Learning Models
    Aljabri, Malak
    Alahmadi, Amal A.
    Mohammad, Rami Mustafa A.
    Aboulnour, Menna
    Alomari, Dorieh M.
    Almotiri, Sultan H.
    ELECTRONICS, 2022, 11 (12)
  • [36] Extreme Learning Machine for Regression and Multiclass Classification
    Huang, Guang-Bin
    Zhou, Hongming
    Ding, Xiaojian
    Zhang, Rui
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02): : 513 - 529
  • [37] Effectuating Supervised Machine Learning Techniques for Multiclass Classification of Problematic Internet and Mobile Usage
    Sarkar, Sneha
    Bhandary, Samanyu
    Arya, Arti
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 1 - 8
  • [38] Machine Learning in Computer Vision
    Khan, Asharul Islam
    Al-Habsi, Salim
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 1444 - 1451
  • [39] Machine learning in computer vision
    Esposito, F
    Malerba, D
    APPLIED ARTIFICIAL INTELLIGENCE, 2001, 15 (08) : 693 - 705
  • [40] Autonomous Bot Using Machine Learning and Computer Vision
    Karkera T.
    Singh C.
    SN Computer Science, 2021, 2 (4)