Hopf bifurcations on cubic lattices

被引:0
|
作者
Callahan, TK [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
关键词
D O I
10.1088/0951-7715/16/6/314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Group theoretic means are employed to analyse the Hopf bifurcation on pattern forming systems with the periodicity of the face-centred (FCC) and body-centred (BCC) cubic lattices. We find all C-axial subgroups of the normal form symmetry group by first extending the symmetry to a larger group. are 15 such solutions for the FCC lattice, of which at least 12 can be stable for appropriate parameter values. In addition, a number of subaxial solutions can bifurcate directly from the trivial solution, and quasiperiodic solutions can also exist. We find 33 C-axial solutions for the BCC lattice and their stability criteria. We discuss applications of the method of symmetry enlargement to other systems. A model-independent approach is taken throughout, and the results are applicable to a wide variety of pattern forming systems. This work is an extension of that done in Callahan T K (2000 Hopf bifurcations on the FCC lattice Proc. Int. Conf. on Differential Equations (Berlin, 1999) vol 1, ed Fiedler et al (Singapore: World Scientific) pp.154-6; 2003 Hopf bifurcations on cubic lattices Bifurcations, Symmetry and Patterns (Trends in Mathematics) ed J Buescu et al (Basel: Birkhauser) pp 123-7).
引用
收藏
页码:2099 / 2122
页数:24
相关论文
共 50 条
  • [21] Hopf bifurcations with fluctuating gain
    Triana, S. A.
    Kelley, D. H.
    Zimmerman, D.
    Sisan, D.
    Lathrop, D. P.
    ASTRONOMISCHE NACHRICHTEN, 2008, 329 (07) : 701 - 705
  • [22] Discretizing dynamical systems with Hopf-Hopf bifurcations
    Paez Chavez, Joseph
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (01) : 185 - 201
  • [23] On degenerate planar Hopf bifurcations
    Ricard, M. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (06)
  • [24] On the stability of HOPF bifurcations for maps
    D'Amico, MB
    Paolini, EE
    Moiola, JL
    PROCEEDINGS OF THE 2001 WORKSHOP ON NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS, 2001, : 209 - 212
  • [25] Hopf bifurcations in dynamical systems
    Rionero, Salvatore
    RICERCHE DI MATEMATICA, 2019, 68 (02) : 811 - 840
  • [26] Simplest normal forms of Hopf and generalized Hopf bifurcations
    Yu, P
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (10): : 1917 - 1939
  • [27] SILNIKOV-HOPF BIFURCATIONS
    DENG, B
    SAKAMOTO, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (01) : 1 - 23
  • [28] HOPF BIFURCATIONS IN TORSIONAL DYNAMICS
    IRAVANI, MR
    SEMLYEN, A
    ABED, EH
    HAMDAN, AMA
    ALEXANDER, JC
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (01) : 28 - 36
  • [29] EQUIVALENCE OF DEGENERATE HOPF BIFURCATIONS
    EDALAT, A
    NONLINEARITY, 1991, 4 (03) : 685 - 695
  • [30] The complex cubic-quintic Ginzburg-Landau equation: Hopf bifurcations yielding traveling waves
    Mancas, Stefan C.
    Choudhury, S. Roy
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (4-5) : 281 - 291