On logically defined recognizable tree languages

被引:0
|
作者
Ésik, Z
Weil, P
机构
[1] Univ Szeged, Dept Comp Sci, Szeged, Hungary
[2] CNRS, LaBRI, F-75700 Paris, France
[3] Univ Bordeaux 1, F-33405 Talence, France
来源
FST TCS 2003: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE | 2003年 / 2914卷
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We provide an algebraic characterization of the expressive power of various naturally defined logics on finite trees. These logics are described in terms of Lindstrom quantifiers, and particular cases include first-order logic and modular logic. The algebraic characterization we give is expressed in terms of a new algebraic structure, finitary preclones, and uses a generalization of the block product operation.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 50 条
  • [21] LEARNING OF RECOGNIZABLE PICTURE LANGUAGES
    SIROMONEY, R
    MATHEW, L
    SUBRAMANIAN, KG
    DARE, VR
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 654 : 247 - 259
  • [22] Operations preserving recognizable languages
    Berstel, J
    Boasson, L
    Carton, O
    Petazzoni, B
    Pin, JE
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2003, 2751 : 343 - 354
  • [23] A CHARACTERIZATION OF RECOGNIZABLE PICTURE LANGUAGES
    INOUE, K
    TAKANAMI, I
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 654 : 133 - 143
  • [24] Recognizable languages of arrows and cospans
    Bruggink, H. J. Sander
    Koenig, Barbara
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2018, 28 (08) : 1290 - 1332
  • [25] On recognizable stable trace languages
    Husson, JF
    Morin, R
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, 2000, 1784 : 177 - 191
  • [26] RECOGNIZABLE LANGUAGES IN CONCURRENCY MONOIDS
    DROSTE, M
    THEORETICAL COMPUTER SCIENCE, 1995, 150 (01) : 77 - 109
  • [27] Recognizable languages in divisibility monoids
    Droste, M
    Kuske, D
    FUNDAMENTALS OF COMPUTATION THEORY, 1999, 1684 : 246 - 257
  • [29] Subclasses of recognizable trace languages
    Reineke, H
    APPLICATION AND THEORY OF PETRI NETS 1995, 1995, 935 : 357 - 373
  • [30] On recognizable infinite array languages
    Gnanasekaran, S
    Dare, VR
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2004, 3322 : 209 - 218