A microfocus x-ray source based on a nonmetal liquid-jet anode

被引:6
|
作者
Tuohimaa, T. [1 ]
Ewald, J. [1 ]
Schlie, M. [1 ]
Fernandez-Varea, J. M. [2 ]
Hertz, H. M. [1 ]
Vogt, U. [1 ]
机构
[1] KTH Royal Inst Technology Albanova, Dept Appl Phys, SE-10691 Stockholm, Sweden
[2] Univ Barcelona, Fac Fis ECM, ES-08028 Barcelona, Spain
关键词
D O I
10.1063/1.2942379
中图分类号
O59 [应用物理学];
学科分类号
摘要
We demonstrate stable operation of a nonmetallic anode in an electron-impact x-ray source. A high-brightness electron beam is focused on a similar to 70 m/s speed, similar to 10 mu m diameter methanol jet producing stable x-ray emission with peak spectral brightness at similar to 5.4 x 10(5) photons/(s x mu m(2) x sr x 0.1% BW). The jet is fully evaporated in the interaction point. The shape of a simulated spectrum using Monte Carlo methods shows good agreement with experimental data, and the theoretical brightness values give an upper limit for the achievable x-ray emission from jets with very high velocities. Using this anode concept, all compounds and elements found in liquid form are potentially usable for x-ray generation. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Liquid-jet target laser-plasma sources for EUV and X-ray lithography
    Rymell, L.
    Malmqvist, L.
    Berglund, M.
    Hertz, H.M.
    Microelectronic Engineering, 1999, 46 (01): : 453 - 455
  • [22] Acid dissociation at the aqueous liquid/vapor interface: A liquid-jet X-ray photoelectron spectroscopy study
    Hemminger, John C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [23] Microfocus X-Ray Tubes with a Silicon Autoemission Nanocathode as an X-Ray Source
    N. A. Dyuzhev
    G. D. Demin
    T. A. Gryazneva
    A. E. Pestov
    N. N. Salashchenko
    N. I. Chkhalo
    F. A. Pudonin
    Bulletin of the Lebedev Physics Institute, 2018, 45 : 1 - 5
  • [24] X-ray microscope with refractive X-ray optics and microfocus laboratory source
    Serebrennikov, D. A.
    Dudchik, Yu. I.
    Barannikov, A. A.
    Klimova, N. B.
    Snigirev, A. A.
    ADVANCES IN LABORATORY-BASED X-RAY SOURCES, OPTICS, AND APPLICATIONS VI, 2017, 10387
  • [25] High-brightness water-window electron-impact liquid-jet microfocus source
    Skoglund, P.
    Lundstrom, U.
    Vogt, U.
    Hertz, H. M.
    APPLIED PHYSICS LETTERS, 2010, 96 (08)
  • [26] Contrast and resolution in imaging with a microfocus x-ray source
    Pogany, A
    Gao, D
    Wilkins, SW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1997, 68 (07): : 2774 - 2782
  • [27] PRACTICAL DESIGN CONSIDERATIONS FOR A MICROFOCUS X-RAY SOURCE
    HAMILL, S
    NORTON, JT
    ACTA CRYSTALLOGRAPHICA SECTION A-CRYSTAL PHYSICS DIFFRACTION THEORETICAL AND GENERAL CRYSTALLOGRAPHY, 1969, A 25 : S69 - &
  • [28] EXPERIENCE WITH IMAGING BY USING OF MICROFOCUS X-RAY SOURCE
    Zaprazny, Zdenko
    Korytar, Dusan
    Dubecky, Frantisek
    Ac, Vladimir
    Stachura, Zbigniew
    Lekki, Janusz
    Bielicky, Jakub
    Mudron, Jan
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2010, 61 (05): : 287 - 290
  • [29] Optimization and testing of microfocus pulsed X-ray source
    Bai, Jiaxin
    Liu, Yunpeng
    Mu, Junxu
    Lai, Sheng
    Yu, Hao
    Xia, Ao
    Wang, Kang
    Tang, Xiaobin
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2025, 1075
  • [30] X-ray interferometry technique using an X-ray microfocus laboratory source.
    Voevodina, M.
    Lyatun, S.
    Barannikov, A.
    Lyatun, I
    Snigireva, I
    Snigirev, A.
    ADVANCES IN METROLOGY FOR X-RAY AND EUV OPTICS IX, 2020, 11492