Limits to the Optical Response of Graphene and Two-Dimensional Materials

被引:40
|
作者
Miller, Owen D. [1 ,2 ]
Ilic, Ognjen [3 ]
Christensen, Thomas [4 ]
Reid, M. T. Homer [5 ]
Atwater, Harry A. [3 ]
Joannopoulos, John D. [4 ]
Soljacic, Mann [4 ]
Johnson, Steven G. [4 ,5 ]
机构
[1] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[2] Yale Univ, Energy Sci Inst, New Haven, CT 06511 USA
[3] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
[5] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
2D materials; graphene; upper bounds; near-field optics; nonlocality; RADIATIVE HEAT-TRANSFER; OXIDE-FILMS; PLASMONICS; SCATTERING; TERAHERTZ; LIGHT;
D O I
10.1021/acs.nanolett.7b02007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) materials provide a platform for strong light matter interactions, creating wide-ranging design opportunities via new-material discoveries and new methods for geometrical structuring. We derive general upper bounds to the strength of such light matter interactions, given only the optical conductivity of the material, including spatial nonlocality, and otherwise independent of shape and configuration. Our material figure-of-merit shows that highly doped graphene is an optimal material at infrared frequencies, whereas single-atomic-layer silver is optimal in the visible. For quantities ranging from absorption and scattering to near-field spontaneous-emission enhancements and radiative heat transfer, we consider canonical geometrical structures and show that in certain cases the bounds can be approached, while in others there may be significant opportunity for design improvement. The bounds can encourage systematic improvements in the design of ultrathin broadband absorbers, 2D antennas, and near-field energy harvesters.
引用
收藏
页码:5408 / 5415
页数:8
相关论文
共 50 条
  • [21] Optical Modulators with Two-dimensional Layered Materials
    Sun, Zhipei
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3851 - 3851
  • [22] Nonlinear optical microscopy in two-dimensional materials
    Jiang T.
    Huang D.
    Song R.
    Liu A.
    Wang Z.
    Cheng X.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (21): : 2711 - 2736
  • [23] Optical shift spectroscopy in two-dimensional materials
    Zha, Mingjie
    Li, Xiaofeng
    Xu, Enze
    Yan, Xiao-Qing
    Zhou, Xinxing
    Jing, Hui
    Kuang, Le -Man
    Tian, Jian-Guo
    Liu, Zhi-Bo
    OPTICA, 2024, 11 (03): : 344 - 353
  • [24] Optical imprinting of superlattices in two-dimensional materials
    Kim, Hwanmun
    Dehghani, Hossein
    Aoki, Hideo
    Martin, Ivar
    Hafezi, Mohammad
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [25] Nonlinear optical properties of two-dimensional materials
    Yang Yunqi
    Yan Lei
    Gong Ziyao
    He QinYong
    Ma GuoHong
    Zhang SaiFeng
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (08)
  • [26] Superradiance of optical phonons in two-dimensional materials
    Cassabois, G.
    Fugallo, G.
    Gil, B.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [27] Quantitative optical mapping of two-dimensional materials
    Bjarke S. Jessen
    Patrick R. Whelan
    David M. A. Mackenzie
    Birong Luo
    Joachim D. Thomsen
    Lene Gammelgaard
    Timothy J. Booth
    Peter Bøggild
    Scientific Reports, 8
  • [28] Two-Dimensional Materials Photodetectors for Optical Communications
    Ke Yuxuan
    Cen Yingqian
    Qi Dianyu
    Zhang Wenjing
    Zhang Qing
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2023, 50 (01):
  • [29] Two-dimensional Weyl points and nodal lines in pentagonal materials and their optical response
    Bravo, Sergio
    Pacheco, M.
    Nunez, V.
    Correa, J. D.
    Chico, Leonor
    NANOSCALE, 2021, 13 (12) : 6117 - 6128
  • [30] Colloquium: Spintronics in graphene and other two-dimensional materials
    Avsar, A.
    Ochoa, H.
    Guinea, F.
    Ozyilmaz, B.
    Van Wees, B. J.
    Vera-Marun, I. J.
    REVIEWS OF MODERN PHYSICS, 2020, 92 (02)