Explore Spatio-Temporal Learning of Large Sample Hydrology Using Graph Neural Networks

被引:41
|
作者
Sun, Alexander Y. [1 ]
Jiang, Peishi [2 ]
Mudunuru, Maruti K. [2 ]
Chen, Xingyuan [2 ]
机构
[1] Univ Texas Austin, Bur Econ Geol, Jackson Sch Geosci, Austin, TX 78712 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
关键词
Streamflow forecasting; Large sample hydrology; Graph neural networks; Explainable AI; Machine learning; Prediction in Ungauged Basins; CATCHMENT ATTRIBUTES; DATA SET; STREAMFLOW; PRECIPITATION; METEOROLOGY; PREDICTION; PATTERNS; DATASET; BASINS; RISK;
D O I
10.1029/2021WR030394
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Streamflow forecasting over gauged and ungauged basins play a vital role in water resources planning, especially under the changing climate. Increased availability of large sample hydrology data sets, together with recent advances in deep learning techniques, has presented new opportunities to explore temporal and spatial patterns in hydrological signatures for improving streamflow forecasting. The purpose of this study is to adapt and benchmark several state-of-the-art graph neural network (GNN) architectures, including ChebNet, Graph Convolutional Network (GCN), and GraphWaveNet, for end-to-end graph learning. We explicitly represent river basins as nodes in a graph, learn the spatiotemporal nodal dependencies, and then use the learned relations to predict streamflow simultaneously across all nodes in the graph. The efficacy of the developed GNN models is investigated using the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set under two settings, fixed graph topology (transductive learning), and variable graph topology (inductive learning), with the latter applicable to prediction in ungauged basins (PUB). Results indicate that GNNs are generally robust and computationally efficient, achieving similar or better performance than a baseline model trained using the long short-term memory (LSTM) network. Further analyses are conducted to interpret the graph learning process at the edge and node levels and to investigate the effect of different model configurations. We conclude that graph learning constitutes a viable machine learning-based method for aggregating spatiotemporal information from a multitude of sources for streamflow forecasting
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Continual spatio-temporal graph convolutional networks
    Hedegaard, Lukas
    Heidari, Negar
    Iosifidis, Alexandros
    PATTERN RECOGNITION, 2023, 140
  • [32] SPATIO-TEMPORAL GRAPH COMPLEMENTARY SCATTERING NETWORKS
    Cheng, Zida
    Chen, Siheng
    Zhang, Ya
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5573 - 5577
  • [33] Graph-Based Spatio-Temporal Backpropagation for Training Spiking Neural Networks
    Yan, Yulong
    Chu, Haoming
    Chen, Xin
    Jin, Yi
    Huan, Yuxiang
    Zheng, Lirong
    Zou, Zhuo
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [34] InsGNN: Interpretable spatio-temporal graph neural networks via information bottleneck
    Fang, Hui
    Wang, Haishuai
    Gao, Yang
    Zhang, Yonggang
    Bu, Jiajun
    Han, Bo
    Lin, Hui
    INFORMATION FUSION, 2025, 119
  • [35] Traffic Flow Prediction Based on Spatio-Temporal Aggregated Graph Neural Networks
    Wu, Shuangshuang
    Hu, Yao
    TRANSPORTATION RESEARCH RECORD, 2025,
  • [36] Hierarchical spatio-temporal graph convolutional neural networks for traffic data imputation
    Xu, Dongwei
    Peng, Hang
    Tang, Yufu
    Guo, Haifeng
    INFORMATION FUSION, 2024, 106
  • [37] Spatio-temporal Graph Learning for Epidemic Prediction
    Yu, Shuo
    Xia, Feng
    Li, Shihao
    Hou, Mingliang
    Sheng, Quan Z.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [38] SCGTracker: Spatio-temporal correlation and graph neural networks for multiple object tracking
    Zhang, Yajuan
    Liang, Yongquan
    Leng, Jiaxu
    Wang, Zhihui
    PATTERN RECOGNITION, 2024, 149
  • [39] Spatio-temporal graph neural networks for missing data completion in traffic prediction
    Chen, Jiahui
    Yang, Lina
    Yang, Yi
    Peng, Ling
    Ge, Xingtong
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2024,
  • [40] Towards spatio-temporal prediction of cavitating fluid flow with graph neural networks
    Gao, Rui
    Heydari, Shayan
    Jaiman, Rajeev K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 177