Dissipative particle dynamics with energy conservation: Isoenergetic integration and transport properties

被引:4
|
作者
Soleymani, Fatemeh A. [1 ,2 ]
Ripoll, Marisol [1 ,2 ]
Gompper, Gerhard [1 ,2 ]
Fedosov, Dmitry A. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Complex Syst, Theoret Soft Matter & Biophys, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 152卷 / 06期
关键词
MULTIPARTICLE COLLISION DYNAMICS; BOLTZMANN-EQUATION; THERMAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; KINETIC-THEORY; HEAT; SIMULATION; DIFFUSION; TEMPERATURE; DERIVATION;
D O I
10.1063/1.5119778
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simulations of nano- to micro-meter scale fluidic systems under thermal gradients require consistent mesoscopic methods accounting for both hydrodynamic interactions and proper transport of energy. One such method is dissipative particle dynamics with energy conservation (DPDE), which has been used for various fluid systems with non-uniform temperature distributions. We propose an easily parallelizable modification of the velocity-Verlet algorithm based on local energy redistribution for each DPDE particle such that the total energy in a simulated system is conserved up to machine precision. Furthermore, transport properties of a DPDE fluid are analyzed in detail. In particular, an analytical approximation for the thermal conductivity coefficient is derived, which allows its a priori estimation for a given parameter set. Finally, we provide approximate expressions for the dimensionless Prandtl and Schmidt numbers, which characterize fluid transport properties and can be adjusted independently by a proper selection of model parameters. In conclusion, our results strengthen the DPDE method as a very robust approach for the investigation of mesoscopic systems with temperature inhomogeneities.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Generalized Energy-Conserving Dissipative Particle Dynamics with Reactions
    Lisal, Martin
    Larentzos, James P.
    Avalos, Josep Bonet
    Mackie, Allan D.
    Brennan, John K.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (04) : 2503 - 2512
  • [42] Hydrodynamic and transport behavior of solid nanoparticles simulated with dissipative particle dynamics
    Haugen, Jeffery
    Ziebarth, Jesse
    Eckstein, Eugene C.
    Laradji, Mohamed
    Wang, Yongmei
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2023, 14 (02)
  • [43] Fluid particle dynamics: A synthesis of dissipative particle dynamics and smoothed particle dynamics
    Espanol, P
    EUROPHYSICS LETTERS, 1997, 39 (06): : 605 - 610
  • [44] Foundations of dissipative particle dynamics
    Flekkoy, Eirik G., 2000, American Institute of Physics Inc. (62):
  • [45] Perspective: Dissipative particle dynamics
    Espanol, Pep
    Warren, Patrick B.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (15):
  • [46] Applications of dissipative particle dynamics
    Groot, RD
    NOVEL METHODS IN SOFT MATTER SIMULATIONS, 2004, 640 : 5 - 38
  • [47] Multiscale dissipative particle dynamics
    De Fabritiis, GD
    Coveney, PV
    Flekkoy, EG
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792): : 317 - 331
  • [48] Microhydrodynamics with dissipative particle dynamics
    Espanol, P
    Zuniga, I
    DISORDERED MATERIALS AND INTERFACES, 1996, 407 : 81 - 85
  • [49] The temperature in dissipative particle dynamics
    Den Otter, WK
    Clarke, JHR
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (06): : 1179 - 1193
  • [50] Splitting for dissipative particle dynamics
    Shardlow, T
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (04): : 1267 - 1282