Dissipative particle dynamics with energy conservation: Isoenergetic integration and transport properties

被引:4
|
作者
Soleymani, Fatemeh A. [1 ,2 ]
Ripoll, Marisol [1 ,2 ]
Gompper, Gerhard [1 ,2 ]
Fedosov, Dmitry A. [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Complex Syst, Theoret Soft Matter & Biophys, D-52425 Julich, Germany
[2] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 152卷 / 06期
关键词
MULTIPARTICLE COLLISION DYNAMICS; BOLTZMANN-EQUATION; THERMAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; KINETIC-THEORY; HEAT; SIMULATION; DIFFUSION; TEMPERATURE; DERIVATION;
D O I
10.1063/1.5119778
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Simulations of nano- to micro-meter scale fluidic systems under thermal gradients require consistent mesoscopic methods accounting for both hydrodynamic interactions and proper transport of energy. One such method is dissipative particle dynamics with energy conservation (DPDE), which has been used for various fluid systems with non-uniform temperature distributions. We propose an easily parallelizable modification of the velocity-Verlet algorithm based on local energy redistribution for each DPDE particle such that the total energy in a simulated system is conserved up to machine precision. Furthermore, transport properties of a DPDE fluid are analyzed in detail. In particular, an analytical approximation for the thermal conductivity coefficient is derived, which allows its a priori estimation for a given parameter set. Finally, we provide approximate expressions for the dimensionless Prandtl and Schmidt numbers, which characterize fluid transport properties and can be adjusted independently by a proper selection of model parameters. In conclusion, our results strengthen the DPDE method as a very robust approach for the investigation of mesoscopic systems with temperature inhomogeneities.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dynamic and transport properties of dissipative particle dynamics with energy conservation
    Avalos, JB
    Mackie, AD
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (11): : 5267 - 5276
  • [2] Dissipative particle dynamics with energy conservation
    Espanol, P
    EUROPHYSICS LETTERS, 1997, 40 (06): : 631 - 636
  • [3] Dissipative particle dynamics with energy conservation
    Europhysics Letters, 40 (06):
  • [4] Dissipative particle dynamics with energy conservation
    Avalos, JB
    Mackie, AD
    EUROPHYSICS LETTERS, 1997, 40 (02): : 141 - 146
  • [5] Integrating dissipative particle dynamics with energy conservation
    Kusaka, Isamu
    Liesen, Nicholas T.
    PHYSICAL REVIEW E, 2020, 101 (04)
  • [6] Dissipative particle dynamics with energy conservation:: Heat conduction
    Ripoll, M
    Español, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1329 - 1338
  • [7] Heat conduction modeling with energy conservation dissipative particle dynamics
    Ripoll, M.
    Español, P.
    Heat and Technology, 2000, 18 (SUPPL. 1): : 57 - 61
  • [8] Dissipative particle dynamics with energy conservation: Modelling of heat flow
    Mackie, AD
    Avalos, JB
    Navas, V
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (09) : 2039 - 2049
  • [9] New parallelizable schemes for integrating the Dissipative Particle Dynamics with Energy conservation
    Homman, Ahmed-Amine
    Maillet, Jean-Bernard
    Roussel, Julien
    Stoltz, Gabriel
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (02):
  • [10] Dissipative particle dynamics: Transport coefficients
    Evans, GT
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (03): : 1338 - 1342