TiO2-coated Nonstoichiometric SiOx Nanosphere for High Capacity Anode Material for Lithium Ion Batteries

被引:4
|
作者
Bae, Juhye [1 ]
Kim, Dae Sik [1 ]
Park, Eunjun [1 ]
Park, Min-Sik [2 ]
Kim, Hansu [1 ]
机构
[1] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[2] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, Suwon 446701, South Korea
来源
关键词
SiOx nanosphere; TiO2; coating; Si-based anode materials; Li-ion battery; Electrochemistry; PERFORMANCE; NANOCOMPOSITE; PARTICLES; COMPOSITE; SURFACE;
D O I
10.1002/bkcs.10817
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonstoichiometric SiOx-based nanocomposites have gained considerable attention as promising anode materials for lithium-ion batteries because of their high capacity and relatively good cycle performance. However, their commercial use is still limited by some technical problems such as poor thermal reliability, dimensional stability, and safety. Herein we show that surface modification with TiO2 can effectively improve the thermal reliability of SiOx nanocomposites without sacrificing their capacity and cycle performance. We suggest that the TiO2 coating layer could significantly improve the thermal reliability of the SiOx nanocomposites. Even though the TiO2 phase introduced is less active, TiO2-coated nonstoichiometric SiOx nanocomposites showed electrochemical performance comparable with that of bare nonstoichiometric SiOx nanocomposite. We believe that the surface modification approach proposed herein will open up a new route toward high capacity Si-based anode materials for lithium-ion batteries.
引用
收藏
页码:1039 / 1043
页数:5
相关论文
共 50 条
  • [41] Hierarchical C/SiOx/TiO2 ultrathin nanobelts as anode materials for advanced lithium ion batteries
    Yang, Zhongmei
    Ding, Yanhuai
    Jiang, Yunhong
    Zhang, Ping
    Jin, Haibao
    NANOTECHNOLOGY, 2018, 29 (40)
  • [42] Silver-coated TiO2 nanostructured anode materials for lithium ion batteries
    M. M. Rahman
    Jia-Zhao Wang
    David Wexler
    Yu-Yuan Zhang
    Xin-Jun Li
    Shu-Lei Chou
    Hua-Kun Liu
    Journal of Solid State Electrochemistry, 2010, 14 : 571 - 578
  • [43] Ultrasmall TiO2-Coated Reduced Graphene Oxide Composite as a High-Rate and Long-Cycle-Life Anode Material for Sodium-Ion Batteries
    Liu, Yao
    Liu, Jingyuan
    Bin, Duan
    Hou, Mengyan
    Tamirat, Andebet Gedamu
    Wang, Yonggang
    Xia, Yongyao
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (17) : 14818 - 14826
  • [44] SnO2 nanorods grown on graphite as a high-capacity anode material for lithium ion batteries
    Liu, Hongdong
    Huang, Jiamu
    Li, Xinlu
    Liu, Jia
    Zhang, Yuxin
    CERAMICS INTERNATIONAL, 2012, 38 (06) : 5145 - 5149
  • [45] A Hollow Silicon Nanosphere/Carbon Nanotube Composite as an Anode Material for Lithium-Ion Batteries
    Tang, Hao
    Xu, Yuanyuan
    Liu, Li
    Zhao, Decheng
    Zhang, Zhen
    Wu, Yutong
    Zhang, Yi
    Liu, Xiang
    Wang, Zhoulu
    COATINGS, 2022, 12 (10)
  • [46] SnO2-NiO-C nanocomposite as a high capacity anode material for lithium-ion batteries
    Hassan, Mohd Faiz
    Rahman, M. M.
    Guo, Zaiping
    Chen, Zhixin
    Liu, Huakun
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) : 9707 - 9712
  • [47] High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries
    Lian, Peichao
    Zhu, Xuefeng
    Liang, Shuzhao
    Li, Zhong
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2011, 56 (12) : 4532 - 4539
  • [48] Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries
    Wang, Ying
    Su, Dawei
    Ung, Alison
    Ahn, Jung-ho
    Wang, Guoxiu
    NANOTECHNOLOGY, 2012, 23 (05)
  • [49] Transforming silicon slag into high-capacity anode material for lithium-ion batteries
    Vanpeene, Victor
    Heitz, Alexandre
    Herkendaal, Natalie
    Soucy, Patrick
    Douillard, Thierry
    Roue, Lionel
    BATTERY ENERGY, 2022, 1 (04):
  • [50] High capacity graphite-silicon composite anode material for lithium-ion batteries
    Fuchsbichler, B.
    Stangl, C.
    Kren, H.
    Uhlig, F.
    Koller, S.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2889 - 2892