Composition-graded solid electrolyte for determination of the Gibbs energy of formation of lanthanum zirconate

被引:0
|
作者
Jacob, KT
Dasgupta, N
Waseda, Y
机构
[1] Indian Inst Sci, Ctr Mat Res, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Met, Bangalore 560012, Karnataka, India
[3] Bharat Heavy Elect Ltd, Ceram Technol Inst, Bangalore 560012, Karnataka, India
[4] Tohoku Univ, Inst Adv Mat Proc, Sendai, Miyagi 98077, Japan
关键词
D O I
暂无
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A composition-graded solid electrolyte has been used to determine the standard Gibbs free energy of formation of lanthanum zirconate (La2Zr2O7) from the component oxides lanthana (La2O3) (A-rare earth) and zirconia (ZrO2) (monoclinic) in the temperature range of 870-1240 K. The cell used for measurement can be represented as Pt, O-2, CaO + CaF(2)parallel to CaF2 \(x=0) (LaF3)(x)(CaF2)(1-x) parallel to(x=0.32) LaF3 + La2Zr2O7 + ZrO2, O-2, Pt A composition-graded electrolyte has been introduced to compensate the solubility effects of the electrode material (lanthanum fluoride, LaF3) in the solid electrolyte (calcium fluoride, CaF2), The ability of the graded electrolyte to generate a Nernstian response is demonstrated, using electrodes with known fluorine chemical potentials. For the reaction La2O3 (A-rare earth) and (ZrO2) (monoclinic) La2Zr2O7 (pyrochlore), the Gibbs free energy change (Delta G(f,ox)degrees) is given by the formula -133800 - 10.32T (+/-4500) (in units of J/mol), The enthalpy and entropy of formation of La2Zr2O7 obtained in this study are in good agreement with calorimetric data. The "third-law" enthalpy of formation of La2Zr2O7, from the component oxides at 298.15 K, is -133.8 +/- 5 kJ/mol.
引用
收藏
页码:1926 / 1930
页数:5
相关论文
共 50 条
  • [41] A dry cold sintering to Ta doped-lithium lanthanum zirconate solid electrolyte for all-solid-state lithium metal battery
    Rahmawati, Fitria
    Alaih, Imam S.
    Rosalin, Azka W.
    Nurcahyo, I. F.
    Nursukatmo, Hartoto
    Nilasary, Hanida
    Oktaviano, Haryo S.
    Raihan, Edo
    Muzayanha, Soraya U.
    Handaka, Muhammad F. A.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2024, 13 (05): : 952 - 959
  • [42] Probing the Phase Transition during the Formation of Lithium Lanthanum Zirconium Oxide Solid Electrolyte
    Hu, Yubing
    Feng, Tianshi
    Xu, Lei
    Zhang, Lifeng
    Luo, Langli
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (37) : 41978 - 41987
  • [43] Electrochemical determination of gibbs energy of formation of NiTiO3 (ilmenite)
    G. M. Kale
    Metallurgical and Materials Transactions B, 1998, 29 : 31 - 38
  • [44] DETERMINATION OF THE GIBBS FREE-ENERGY OF FORMATION OF MAGNESITE BY SOLUBILITY METHODS
    KITTRICK, JA
    PERYEA, FJ
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1986, 50 (01) : 243 - 247
  • [45] Determination of the Gibbs Formation Energy of CuGaSe2 by EMF Method
    Ider, Muhsin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 9049 - 9065
  • [46] Electrochemical determination of Gibbs energy of formation of NiTiO3 (ilmenite)
    Kale, GM
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1998, 29 (01): : 31 - 38
  • [47] Potentiometric Determination of the Gibbs Free Energy of Formation of Cadmium and Magnesium Chromites
    Jacob, K. T.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (12) : 1827 - 1831
  • [48] DETERMINATION OF THE STANDARD FREE-ENERGY OF FORMATION OF PDO(S) FROM THE SOLID OXIDE ELECTROLYTE EMF
    MALLIKA, C
    SREEDHARAN, OM
    GNANAMOORTHY, JB
    JOURNAL OF THE LESS-COMMON METALS, 1983, 95 (02): : 213 - 220
  • [49] Gibbs energy of formation of magnesium antimonite (MgSb2O4) using a magnesium fluoride solid electrolyte galvanic cell
    Raghaven, S
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 1998, 51 (06): : 511 - 513
  • [50] Use of SnO for the determination of standard Gibbs energy of formation of SnO2 by oxide electrolyte e.m.f. measurements
    Mallika, C
    Raj, AMES
    Nagaraja, KS
    Sreedharan, OM
    THERMOCHIMICA ACTA, 2001, 371 (1-2) : 95 - 101