GENERIC LINEAR PERTURBATIONS

被引:3
|
作者
Ichiki, Shunsuke [1 ]
机构
[1] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Yokohama, Kanagawa 2408501, Japan
关键词
Generic linear perturbation; generic projection; stability; modular submanifold; transversality; DISTANCE-SQUARED MAPPINGS; QUADRATIC POLYNOMIAL-MAPPINGS; PLANE; SINGULARITIES; PROJECTIONS;
D O I
10.1090/proc/14094
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In his celebrated paper Generic projections, John Mather has shown that almost all linear projections from a submanifold of a vector space into a subspace are transverse with respect to a given modular submanifold. In this paper, an improvement of Mather's result is stated. Namely, we show that almost all linear perturbations of a smooth mapping from a submanifold of R-m into R-l yield a transverse mapping with respect to a given modular submanifold. Moreover, applications of this result are given.
引用
收藏
页码:4981 / 4991
页数:11
相关论文
共 50 条
  • [21] REMARKS ON PERTURBATIONS IN LINEAR INEQUALITIES
    DANIEL, JW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (05) : 770 - 772
  • [22] Linear perturbations of the Kirchhoff equation
    Berselli, Luigi C.
    Manfrin, Renato
    COMPUTATIONAL & APPLIED MATHEMATICS, 2000, 19 (02): : 157 - 178
  • [23] PERTURBATIONS IN SYSTEMS OF LINEAR INEQUALITIES
    DANIEL, JW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (02) : 299 - 307
  • [24] LINEAR PERTURBATIONS OF THE OPERATOR DIV
    OSMOLOVSKII, VG
    SIBERIAN MATHEMATICAL JOURNAL, 1994, 35 (03) : 580 - 589
  • [25] Quasiconvex Linear Perturbations and Convexity
    Pham Duy Khanh
    Lassonde, Marc
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (06): : 605 - 608
  • [26] Saphar linear relations and perturbations
    Yosra Chamkha
    Marwa Kammoun
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2231 - 2247
  • [27] Linear Perturbations of Quaternionic Metrics
    Alexandrov, Sergei
    Pioline, Boris
    Saueressig, Frank
    Vandoren, Stefan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (02) : 353 - 403
  • [28] COMPACT PERTURBATIONS OF A LINEAR HOMEOMORPHISM
    Cabrera, M. O.
    Arbizu, J. M. Soriano
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 522 - 532
  • [29] On linear perturbations of the Ricker model
    Braverman, Elena
    Kinzebulatov, Damir
    MATHEMATICAL BIOSCIENCES, 2006, 202 (02) : 323 - 339
  • [30] LINEAR PERTURBATIONS FOR THE DIRICHLET PROBLEM
    Mortici, Cristinel
    JOURNAL OF SCIENCE AND ARTS, 2008, (01): : 67 - 69