Error bounds for stochastic shortest path problems

被引:0
|
作者
Hansen, Eric A. [1 ]
机构
[1] Mississippi State Univ, Dept Comp Sci & Engn, Mississippi State, MS 39762 USA
关键词
Markov decision process; Dynamic programming; HEURISTIC-SEARCH ALGORITHMS;
D O I
10.1007/s00186-017-0581-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For stochastic shortest path problems, error bounds for value iteration due to Bertsekas elegantly generalize the classic MacQueen-Porteus error bounds for discounted infinite-horizon Markov decision problems, but incur prohibitive computational overhead. We derive bounds on these error bounds that can be computed with little or no overhead, making them useful in practice-especially so, since easily-computed error bounds have not previously been available for this class of problems.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [31] Proper Policies in Infinite-State Stochastic Shortest Path Problems
    Bertsekas, Dimitri P.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (11) : 3787 - 3792
  • [32] Simplicial Label Correcting Algorithms for Continuous Stochastic Shortest Path Problems
    Yershov, Dmitry S.
    LaValle, Steven M.
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5062 - 5067
  • [33] On the speed of convergence of value iteration on stochastic shortest-path problems
    Bonet, Blai
    MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (02) : 365 - 373
  • [34] On scenario construction for stochastic shortest path problems in real road networks
    Zhang, Dongqing
    Wallace, Stein W.
    Guo, Zhaoxia
    Dong, Yucheng
    Kaut, Michal
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2021, 152 (152)
  • [35] Reliable Shortest Path Problems in Stochastic Time-Dependent Networks
    Chen, Bi Yu
    Lam, William H. K.
    Sumalee, Agachai
    Li, Qingquan
    Tam, Mei Lam
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2014, 18 (02) : 177 - 189
  • [36] SHORTEST PATH PROBLEMS IN HYDROGEOLOGY
    THOMAS, RG
    GROUND WATER, 1978, 16 (05) : 334 - 340
  • [37] Q-learning and policy iteration algorithms for stochastic shortest path problems
    Huizhen Yu
    Dimitri P. Bertsekas
    Annals of Operations Research, 2013, 208 : 95 - 132
  • [38] A relaxation-based pruning technique for a class of stochastic shortest path problems
    Murthy, I
    Sarkar, S
    TRANSPORTATION SCIENCE, 1996, 30 (03) : 220 - 236
  • [39] Partially observed Stochastic shortest path problems with approximate solution by neurodynamic programming
    Patek, Stephen D.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2007, 37 (05): : 710 - 720
  • [40] Algebraic methods applied to shortest path and maximum flow problems in stochastic networks
    Hastings, K. C.
    Shier, D. R.
    NETWORKS, 2013, 61 (02) : 117 - 127