Bounds on correlation functions of quantum rotators

被引:0
|
作者
Bolina, O [1 ]
Parreira, JR
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Inst Estudos Avancados, BR-04602000 Sao Paulo, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1998年 / 12卷 / 27-28期
关键词
D O I
10.1142/S0217979298001630
中图分类号
O59 [应用物理学];
学科分类号
摘要
We derive a McBryan-Spencer bound to the correlation function of a one-dimensional array of quantum rotators in the Villain approximation of the cosine interaction. We obtain the partition function of the system in the gas representation and establish a lower bound on the external charges correlation function. We also discuss the possible existence of a Kosterlitz-Thouless phase for the quantum rotators in the Villain approximation.
引用
收藏
页码:2803 / 2808
页数:6
相关论文
共 50 条
  • [21] BOUNDS FOR CORRELATION-FUNCTIONS OF THE HEISENBERG-ANTIFERROMAGNET
    SHASTRY, BS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : L249 - L253
  • [22] Improving bounds for the number of correlation immune Boolean functions
    Park, SM
    Lee, S
    Sung, SH
    Kim, K
    INFORMATION PROCESSING LETTERS, 1997, 61 (04) : 209 - 212
  • [23] Noise correlation bounds for uniform low degree functions
    Austrin, Per
    Mossel, Elchanan
    ARKIV FOR MATEMATIK, 2013, 51 (01): : 29 - 52
  • [24] Quantum Zeno effect in quantum chaotic rotators
    Kim, SW
    Chough, YT
    An, K
    PHYSICAL REVIEW A, 2001, 63 (05): : 521041 - 521045
  • [25] NON-MONOGAMY OF QUANTUM DISCORD AND UPPER BOUNDS FOR QUANTUM CORRELATION
    Ren, Xi-Jun
    Fan, Heng
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 469 - 478
  • [26] QUANTUM MELTING IN A SYSTEM OF ROTATORS
    FREIMAN, YA
    SUMAROKOV, VV
    BRODYANSKII, AP
    JEZOWSKI, A
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (21) : 3855 - 3858
  • [27] Quantum Zeno effect in quantum chaotic rotators
    Sang Wook Kim
    Chough, Y.-T.
    An, K.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 63 (05): : 521041 - 521045
  • [28] Quantum-classical limit of quantum correlation functions
    Sergi, A
    Kapral, R
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (16): : 7565 - 7576
  • [29] Correlation Functions of Quantum Artin System
    Babujian, Hrachya
    Poghossian, Rubik
    Savvidy, George
    UNIVERSE, 2020, 6 (07)
  • [30] Time dependence of quantum correlation functions
    Bafile, Ubaldo
    Neumann, Martin
    Colognesi, Daniele
    Guarini, Eleonora
    PHYSICAL REVIEW E, 2020, 101 (05)