A fully discrete Nonlinear Galerkin Method for the 3D Navier-Stokes equations

被引:5
|
作者
Guermond, J. -L. [1 ]
Prudhomme, Serge [2 ]
机构
[1] Texas A&M Univ 3368 TAMU, Dept Math, College Stn, TX 77843 USA
[2] Univ Texas Austin, ICES, Austin, TX 78712 USA
关键词
Navier-Stokes equations; nonlinear Galerkin method; suitable solutions; turbulence;
D O I
10.1002/num.20287
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is twofold: (i) We show that the Fourier-based Nonlinear Galerkin Method (NLGM) constructs suitable weak solutions to the periodic Navier-Stokes equations in three space dimensions provided the large scale/small scale cutoff is appropriately chosen. (ii) If smoothness is assumed, NLGM always outperforms the Galerkin method by a factor equal to 1 in the convergence order of the H-1-norm for the velocity and the L-2-norm for the pressure. This is a purely linear superconvergence effect resulting from standard elliptic regularity and holds independently of the nature of the boundary conditions (whether periodicity or no-slip BC is enforced). (C) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 50 条
  • [31] 3D STEADY COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Pokorny, Milan
    Mucha, Piotr B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (01): : 151 - 163
  • [32] REGULARITY CONDITIONS FOR THE 3D NAVIER-STOKES EQUATIONS
    Fan, Jishan
    Gao, Hongjun
    QUARTERLY OF APPLIED MATHEMATICS, 2009, 67 (01) : 195 - 199
  • [33] Partial Regularity for the 3D Navier-Stokes Equations
    Robinson, James C.
    MATHEMATICAL ANALYSIS OF THE NAVIER-STOKES EQUATIONS, 2020, 2254 : 147 - 192
  • [34] Asymptotic stability for the 3D Navier-Stokes equations
    Zhou, Y
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 323 - 333
  • [35] On the energy equality for the 3D Navier-Stokes equations
    Berselli, Luigi C.
    Chiodaroli, Elisabetta
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [36] Timestepping schemes for the 3d Navier-Stokes equations
    Hong, Youngjoon
    Wirosoetisno, Djoko
    APPLIED NUMERICAL MATHEMATICS, 2015, 96 : 153 - 164
  • [37] Remarks on 3D stochastic Navier-Stokes equations
    Flandoli, Ranco
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V, 2008, 59 : 123 - 134
  • [38] Determination of the 3D Navier-Stokes equations with damping
    Shi, Wei
    Yang, Xinguang
    Yan, Xingjie
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (10): : 3872 - 3886
  • [39] Ergodicity for the 3D stochastic Navier-Stokes equations
    Da Prato, G
    Debussche, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (08): : 877 - 947
  • [40] Exact Solution of 3D Navier-Stokes Equations
    Koptev, Alexander, V
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (03): : 306 - 313