Meshless techniques for convection-diffusion problems

被引:0
|
作者
Liu, GR [1 ]
Gu, YT [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Ctr Adv Computat Engn Sci, ACES, Singapore 119260, Singapore
关键词
meshless method; meshfree method; convection-diffusion; numerical analysis;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the stability problem in the analysis of the convection-diffusion problem using meshfree methods is first discussed through an example problem of steady state convection-diffusion. Several techniques are then attempted to overcome the instability issues in convection dominated phenomenon simulated using meshfree collocation methods. These techniques include: the enlargement of the local support domain, upwind support domain, adaptive upwind support domain, and biased support domain. Numerical examples are presented to demonstrate the efficiency, accuracy and stability of the techniques proposed. Comparing with the conventional finite difference method (FDM) and the finite element method (FEM), the meshfree method has found some attractive advantages in solving the convection dominated problems in overcoming the instability problems.
引用
收藏
页码:432 / 437
页数:6
相关论文
共 50 条
  • [41] AD-FDSD for convection-diffusion problems
    Zhang, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 257 - 271
  • [42] SUPERCONVERGENCE FOR CONVECTION-DIFFUSION PROBLEMS WITH LOW REGULARITY
    Ludwig, Lars
    Roos, Hans-Goerg
    APPLICATIONS OF MATHEMATICS 2012, 2012, : 173 - 187
  • [43] Modified exponential schemes for convection-diffusion problems
    Luo, C.
    Dlugogorski, B. Z.
    Moghtaderi, B.
    Kennedy, E. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) : 369 - 379
  • [44] Alternating triangular schemes for convection-diffusion problems
    Vabishchevich, P. N.
    Zakharov, P. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 576 - 592
  • [45] Finite volume methods for convection-diffusion problems
    Lazarov, RD
    Mishev, ID
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 31 - 55
  • [46] H-matrices for convection-diffusion problems with constant convection
    Le Borne, S
    COMPUTING, 2003, 70 (03) : 261 - 274
  • [47] DEFECT CORRECTION METHODS FOR CONVECTION DOMINATED CONVECTION-DIFFUSION PROBLEMS
    AXELSSON, O
    LAYTON, W
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1990, 24 (04): : 423 - 455
  • [48] Multigrid method for solving convection-diffusion problems with dominant convection
    Muratova, Galina V.
    Andreeva, Evgeniya M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 226 (01) : 77 - 83
  • [49] An anisotropic functional setting for convection-diffusion problems
    Canuto, C.
    Tabacco, A.
    East-West Journal of Numerical Mathematics, 2001, 9 (03): : 199 - 231
  • [50] Integral equation approach to convection-diffusion problems
    Wei, Tao
    Xu, Mingtian
    Wang, Yin
    Huagong Xuebao/CIESC Journal, 2015, 66 (10): : 3888 - 3894