BSDE on an infinite horizon and elliptic PDEs in infinite dimension

被引:16
|
作者
Hu, Ying [1 ]
Tessitore, Gianmario [2 ]
机构
[1] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[2] Univ Milan, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
backward stochastic differential equations elliptic PDEs; Hilbert spaces; mild solutions;
D O I
10.1007/s00030-007-6029-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and uniqueness of mild solutions to a possibly degenerate elliptic partial differential equation Lu(x) + psi(x, u(x), del u(x)G(x)) - lambda u(x) = 0 in Hilbert spaces. Our aim is, in the case in which (-, 0, 0) is bounded, to drop the assumptions on the size of A needed in [11]. The main tool will be existence, uniqueness and regular dependence on parameters of a bounded solution to a suitable backward stochastic differential equation with infinite horizon. Finally we apply the result to study an optimal control problem.
引用
收藏
页码:825 / 846
页数:22
相关论文
共 50 条