ε-dimension in infinite dimensional hyperbolic cross approximation and application to parametric elliptic PDEs

被引:4
|
作者
Dinh Dung [1 ]
Griebel, Michael [2 ,3 ]
Vu Nhat Huy [4 ]
Rieger, Christian [2 ]
机构
[1] Vietnam Natl Univ, Informat Technol Inst, 144 Xuan Thuy, Hanoi, Vietnam
[2] Univ Bonn, Inst Numer Simulat, Wegelerstr 6, D-53115 Bonn, Germany
[3] Fraunhofer Inst Algorithms & Sci Comp SCAI Schlos, D-53754 St Augustin, Germany
[4] Vietnam Natl Univ, Coll Sci, 334 Nguyen Trai, Hanoi, Vietnam
关键词
Infinite-dimensional hyperbolic cross approximation; Mixed Sobolev-analytic-type smoothness; epsilon-dimension; Linear information; Parametric elliptic PDEs; Collective Galerkin approximation;
D O I
10.1016/j.jco.2017.12.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this article, we present a cost-benefit analysis of the approximation in tensor products of Hilbert spaces of Sobolev-analytic type. The Sobolev part is defined on a finite dimensional domain, whereas the analytical space is defined on an infinite dimensional domain. As main mathematical tool, we use the epsilon-dimension in Hilbert spaces which gives the lowest number of linear information that is needed to approximate an element from the unit ball W in a Hilbert space Y up to an accuracy epsilon > 0 with respect to the norm of a Hilbert space X. From a practical point of view this means that we a priori fix an accuracy and ask for the amount of information to achieve this accuracy. Such an analysis usually requires sharp estimates on the cardinality of certain index sets which are in our case infinite-dimensional hyperbolic crosses. As main result, we obtain sharp bounds of the epsilon-dimension of the Sobolev-analytic-type function classes which depend only on the smoothness differences in the Sobolev spaces and the dimension of the finite dimensional domain where these spaces are defined. This implies in particular that, up to constants, the costs of the infinite dimensional (analytical) approximation problem is dominated by the finite-variate Sobolev approximation problem. We demonstrate this procedure with examples of functions spaces stemming from the regularity theory of parametric partial differential equations. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:66 / 89
页数:24
相关论文
共 44 条
  • [1] BSDE on an infinite horizon and elliptic PDEs in infinite dimension
    Ying Hu
    Gianmario Tessitore
    Nonlinear Differential Equations and Applications NoDEA, 2007, 14 : 825 - 846
  • [2] BSDE on an infinite horizon and elliptic PDEs in infinite dimension
    Hu, Ying
    Tessitore, Gianmario
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6): : 825 - 846
  • [3] FULLY DISCRETE APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDES
    Bachmayr, Markus
    Cohen, Albert
    Dinh Dung
    Schwab, Christoph
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (05) : 2151 - 2186
  • [4] Exploiting locality in sparse polynomial approximation of parametric elliptic PDEs and application to parameterized domains
    van Harten, Wouter Gerrit
    Scarabosio, Laura
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (05) : 1581 - 1613
  • [5] Approximation of high-dimensional parametric PDEs
    Cohen, Albert
    DeVore, Ronald
    ACTA NUMERICA, 2015, 24 : 1 - 159
  • [6] Hyperbolic cross approximation in infinite dimensions
    Dung, Dinh
    Griebel, Michael
    JOURNAL OF COMPLEXITY, 2016, 33 : 55 - 88
  • [7] Linear collective collocation approximation for parametric and stochastic elliptic PDEs
    Dinh Dung
    SBORNIK MATHEMATICS, 2019, 210 (04) : 565 - 588
  • [8] Quadratic BSDEs with random terminal time and elliptic PDEs in infinite dimension
    Briand, Philippe
    Confortola, Fulvia
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1529 - 1561
  • [9] DISCRETE LEAST SQUARES POLYNOMIAL APPROXIMATION WITH RANDOM EVALUATIONS - APPLICATION TO PARAMETRIC AND STOCHASTIC ELLIPTIC PDES
    Chkifa, Abdellah
    Cohen, Albert
    Migliorati, Giovanni
    Nobile, Fabio
    Tempone, Raul
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (03): : 815 - 837
  • [10] SPARSE ADAPTIVE TAYLOR APPROXIMATION ALGORITHMS FOR PARAMETRIC AND STOCHASTIC ELLIPTIC PDES
    Chkifa, Abdellah
    Cohen, Albert
    DeVore, Ronald
    Schwab, Christoph
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 253 - 280