A novel wide & deep transfer learning stacked GRU framework for network intrusion detection

被引:42
|
作者
Singh, Nongmeikapam Brajabidhu [1 ]
Singh, Moirangthem Marjit [1 ]
Sarkar, Arindam [2 ]
Mandal, Jyotsna Kumar [3 ]
机构
[1] North Eastern Reg Inst Sci Technol, Dept Comp Sci & Engn, Arunachal Pradesh, India
[2] Ramakrishna Mission Vidyamandira, Dept Comp Sci & Engn, Howrah, W Bengal, India
[3] Univ Kalyani, Dept Comp Sci & Engn, Kalyani, W Bengal, India
关键词
Deep learning; GRU; Wide & deep; Transfer learning; NIDS;
D O I
10.1016/j.jisa.2021.102899
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing frequency, severity and complexity of recent cyber attacks around the world, network intrusion detection has become mandatory and highly sophisticated task. Achieving high performance in network intrusion detection by applying benchmark machine learning classifiers (including deep learning techniques) has become a major challenge in recent times. One of the biggest challenges is improving the memorization capacity and generalization ability of NIDS (Network Intrusion Detection Systems). In this paper, we propose a highly scalable novel wide & deep transfer learning (TL) based stacked GRU (Gated Recurrent Unit) model to deal with multi-dimensional point data and multi-variate time series regression and classification problems in network intrusion detection. The proposed model has the memorization capacity of linear regression model and the generalization ability of deep GRU model. The deep component consists of a transfer learning framework that pretrains a source model and then fine-tunes the whole source model on the same dataset multiple times until it gives peak performance. This method gives a multi-class evaluation accuracy of 99.92% on KDDCup 99(10%) dataset and 94.22% on UNSW-NB15 dataset respectively. Extensive experimentations and evaluations have been carried out by comparing it with other machine learning (including deep learning) network intrusion detection techniques. The proposed method outperforms most of the existing intrusion detection approaches.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A Deep Learning Model for Network Intrusion Detection with Imbalanced Data
    Fu, Yanfang
    Du, Yishuai
    Cao, Zijian
    Li, Qiang
    Xiang, Wei
    ELECTRONICS, 2022, 11 (06)
  • [42] Deep Learning Model Transposition for Network Intrusion Detection Systems
    Figueiredo, Joao
    Serrao, Carlos
    de Almeida, Ana Maria
    ELECTRONICS, 2023, 12 (02)
  • [43] Network Anomaly Intrusion Detection Based on Deep Learning Approach
    Wang, Yung-Chung
    Houng, Yi-Chun
    Chen, Han-Xuan
    Tseng, Shu-Ming
    SENSORS, 2023, 23 (04)
  • [44] An Effective Deep Learning Based Scheme for Network Intrusion Detection
    Zhang, Hongpo
    Wu, Chase Q.
    Gao, Shan
    Wang, Zongmin
    Xu, Yuxiao
    Liu, Yongpeng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 682 - 687
  • [45] Adaptive deep learning for network intrusion detection by risk analysis
    Zhang, Lijun
    Lu, Xingyu
    Chen, Zhaoqiang
    Liu, Tianwei
    Chen, Qun
    Li, Zhanhuai
    NEUROCOMPUTING, 2022, 493 : 46 - 58
  • [46] Attention-based Deep Learning for Network Intrusion Detection
    Guo, Naiwang
    Tian, Yingjie
    Li, Fan
    Yang, Hongshan
    2020 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO PROCESSING AND ARTIFICIAL INTELLIGENCE, 2020, 11584
  • [47] Network intrusion detection: systematic evaluation using deep learning
    Kakade, Kiran Shrimant
    Nagalakshmi, T. J.
    Pradeep, S.
    Bapu, B. R. Tapas
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 190 - 201
  • [48] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [49] A Case Study on Using Deep Learning for Network Intrusion Detection
    Fernandez, Gabriel C.
    Xu, Shouhuai
    MILCOM 2019 - 2019 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2019,
  • [50] Network intrusion detection using feature fusion with deep learning
    Abiodun Ayantayo
    Amrit Kaur
    Anit Kour
    Xavier Schmoor
    Fayyaz Shah
    Ian Vickers
    Paul Kearney
    Mohammed M. Abdelsamea
    Journal of Big Data, 10